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The responseof tropical cyclonehazard to
natural and forced patterns of warming

Check for updates

Jonathan Lin1,2 , Chia-Ying Lee2,4, Suzana J. Camargo2,4, Adam H. Sobel2,3,4 & Jing-Yi Zhuo2,4

This study quantifies the influence of the pattern of sea surface temperature change in the tropical
Pacific on tropical cyclone hazard. After downscaling a climate model with an “El Niño-like” forced
response, it is found that the “El Niño-like” pattern of warming induces an “El Niño-like” change to
tropical cyclone hazard. The magnitude of hazard change owing to the “El Niño-like” pattern of
warming is estimated to be around the same order of magnitude as that driven by the forced response
that does not project onto the same pattern of warming, highlighting the sensitivity of local tropical
cyclone hazard to the pattern of warming. Given the uncertainty around the future pattern of Pacific
warming, a storylinewith a “LaNiña-like”pattern ofwarming, of similarmagnitude to the observations,
is created. In this scenario, near-term tropical cyclone hazard over coastal Asia and the Atlantic basin
significantly increases.

Tropical cyclones (TCs) bring about extremewinds, rain, and stormsurge to
coastal locations, and are responsible for billions of dollars of damage per
year1. Research has shown that TC hazard, and consequently damage, will
increase with anthropogenic emissions, threatening prone coastal
communities1–3. Communities that are resilient to hazards up to the 1-in-
100-year event, for instance, would be at risk if the 1-in-150-year event
increases in frequency to the 1-in-75-year event. Thus, it is important to
understand how local TC hazard changeswith anthropogenic emissions, so
that community leaders can make informed decisions with regards to local
climate adaptation.

Recent research has shown a large discrepancy between the historical
observed and modeled patterns of warming in the tropical Pacific. While
climatemodels simulate a decrease in the equatorial zonal SST gradient with
warming, observationshave shownanotable increase in the equatorial zonal
SST gradient over the recent half-century4–6. Preliminary studies have sug-
gested that there may be great sensitivity of the projected TC response to
whether climate models have a future “El Niño-like” response (i.e., reduced
equatorial zonal SST gradient), or a “La Niña-like” response (i.e., increased
equatorial zonal SST gradient)7. Given that many aspects of TC behavior
have been found to be modulated by the El Niño-Southern Oscillation
(ENSO), which stronglymodifies the tropical Pacific zonal SST gradient8–11,
it is important to understand how, and to what degree, TC hazard will
respond to patterns of warming that change themean-state equatorial zonal
SST gradient. At present, there is a large degree of uncertainty surrounding
the response of the tropical Pacific to anthropogenic emissions12.

In this study,we aim tounderstandhowTChazard responds tonatural
and forced patterns of warming. Here, natural patterns of warming are

defined as those occurring through natural variability, while forced patterns
of warming are those occurring through anthropogenic forcing. First, we
confirm that SST patterns arising through natural variability - namely
ENSO - can significantly modulate TC hazard. Second, we decompose
future TC hazard changes into that owing to the forced response of the
tropical Pacific zonal SST gradient, and that owing to the forced response
that is orthogonal to trends in the tropical Pacific zonal SST gradient. We
show that the former can be comparable in magnitude to the latter, sug-
gesting that regional patterns of SST change could play a major role in
determining TC hazard in a changing climate.

Results
Tropical cyclone downscaling
We use output from the pre-industrial control (PI-control) run of the
Community Earth SystemModel version2 (CESM2), aswell as output from
the first 10 ensemble members of the CESM2 Large Ensemble Community
Project (LENS2)13. CESM2-LENS2 simulations cover the time period of
1850-2100, using historical forcing and SSP370 future radiative forcing,
following CMIP6 protocol14. CESM2-LENS2 is run at a nominal 1° hor-
izontal resolution, which is inadequate to properly resolve the most intense
TCs15. Thus, we use the open-source TC downscaling model of Lin et al.
(2023)16 to downscale CESM2-LENS2 and generate a large event set of
synthetic TCs (Methods). On a high level, the downscalingmodel works by
randomly seedingweak vortices in space and time, evolving their trackusing
the beta-and-advection model17, and simulating their intensity using a
statistical-physical intensity model18. We also downscale the ERA5 reana-
lysis from 1979–202319 to benchmark with observations (Methods). We
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focus on the boreal summer TC season, though our methods can be easily
applied to the Austral TC season.

To diagnose the ENSO state and magnitude, we use the July-August-
September-October (JASO)averagedNiño3.4 index20 (“Methods”).We also
use the JASO-averaged east minus west (E-W) index to quantify the
equatorial zonal SST gradient6 (“Methods”). This index measures the SST
difference between the equatorial eastern and western Pacific, and is highly
correlated with Niño-3.4 in both HadISST (r = 0.90) and the CESM2 PI-
control runs (r= 0.78). The E-W index is computedwith respect to the E-W
index climatology over the PI-control run.

In this study, we focus onwind hazards at a fixed point in space.While
this canbe estimatedby resolving the fullwindfieldof eachsyntheticTCand
interpolating the TC-induced wind hazard at each fixed point, it is not
straightforward to compare the modeled wind hazard with observations.
Instead,we follow21, estimating the returnperiodof localTCwindhazardby
obtaining the intensity of all storms that pass within 100 km of a particular
point of interest. This method allows for an easier comparison between
models and observations, as TC intensity is better observed than point-wise
wind speed. However, evaluating local TC hazards requires a large sample
set, and thus this approach depends heavily on the computationally inex-
pensive TC downscaling model. We use the USA best-track estimates of
intensity in the IBTrACS observational dataset (1979–2023) to benchmark
the model’s estimates of TC wind hazard22.

The influence of internal variability on tropical cyclone hazard
To begin, we first qualitatively compare TC hazard, as represented among
the downscaled events in CESM2-PI, with that estimated from the obser-
vations. Figure 1a, shows the intensity of the 1-in-100-year storm in the
CESM2 PI-control period, while the intensity of the strongest storm within
100-km of a point in IBTrACS is shown in Fig. 1b. The overall structure of
observed TC hazard is qualitatively reproduced by the CESM2 PI-control
downscaling, though there is a negative bias in the Atlantic and Eastern
Pacific basins.

Next, we turn to our metric of local TC hazard and show that the
downscaling model can reasonably reproduce local TC hazard as esti-
mated from the observations. Figure 1c shows the return period curve
for themaximum intensity of TCs that pass within 100 kmwithinHong
Kong. We observe that TC wind hazard, as represented by the ERA5
downscaled tracks, is relatively similar to that estimated from IBTrACS.
In order to account for sampling error in the historical events, we sub-
sample the total ERA5 event set to the same size as the number of TCs in
the observations, as shown in the green curves in Fig. 1c. This exercise

shows that the modeled TC hazard is reasonable when considering
sampling error, though the downscalingmodel likely has an intensity or
frequency bias at Hong Kong. Finally, we compare the TC wind hazard
inferred from the CESM2 PI-control downscaled tracks. The modeled
TC wind hazard is slightly larger than that in ERA5, which could be
owing to model biases in both the steering flow and thermodynamic
environment.

How is TC wind hazard modulated by internal variability? We
henceforth focus on ENSO, as it is the most dominant tropical mode of
internal variability. However, there are a few modes of natural varia-
bility that have been proposed to modulate TC behavior across the
globe, such as Pacific Decadal Variability23 or the Pacific Meridional
Mode24,25. However, it is infeasible to condition the local return period
hazard on the phase of ENSO using historical observations or
observation-based data sets (i.e., best track or reanalysis) alone, due to
the small sample size of the historical observations/reanalyzes. In
contrast, the 1000-year PI-control run allows us to calculate TC hazard,
conditioning on the phase of ENSO, without significantly sacrificing
sample size (see Methods). Figure 2a–d shows the spatial pattern of the
frequency of the 1-in-100-year storm separated into ENSO states.
During strong La Niña events, the hazard in theWest Pacific and North
Atlantic increases, and vice-versa during strong El Niño events. We
observe that the downscaling model applied to the CESM2 PI-control
period qualitatively reproduces the observed relationship between TC
activity and ENSO8,11,26,27.

As can be inferred from Fig. 2a–d, the state of ENSO significantly
modulates the local TC wind hazard. As shown in Fig. 2e, during neutral
ENSO years, the 1-in-100-year storm at Hong Kong has an intensity of
approximately 135-knots, while during strong LaNiña events and strong El
Niño events, a 135-knot storm has a return period of around 30 years and
300 years, respectively, around an order ofmagnitudemodulation of the TC
wind hazard. One caveat here is that in the downscaled tracks, the TC
frequency in theWestPacificdependson theENSOstate; this relationship is
not found in the observations (Fig. S6). However, only a portion of the total
wind hazard modulation by ENSO is controlled by TC frequency (Fig. S1).
Thus, these results are robust to model biases in the sensitivity of TC fre-
quency to ENSO state.

These results show that ENSO, which generates SST patterns as a
consequence of internal atmosphere-ocean dynamics, plays a significant
role inmodulating local TC hazards.Would a long-term forced trend of the
tropical Pacific towards an “El Niño-like” or “La Niña-like” mean-state
consequently alter future TC wind hazard similarly?

Fig. 1 | Representation of tropical cyclone hazard
in the downscaling model. a Intensity of the 1-in-
100-year storm among the downscaled TCs in
CESM2 PI-control. b Intensity of the strongest
storm within 100 km of a point from IBTrACS.
c Return period curve for the maximum intensity of
TCs that pass within 100 km of Hong Kong, calcu-
lated through (green) downscaling ERA5 from
1979–2022, (blue) downscaling the 1000-year
CESM2 PI-control simulation, (red) downscaling 10
members of CESM2-LENS2 from 2050–2100, and
(black) IBTrACS observations. The light green lines
indicate sub-sampling of the ERA5 downscaling
event set to the same sample size as IBTrACS, with
dashed-green lines indicating the 95% confidence
interval.
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The influence of warming patterns on tropical cyclone hazard
How is local TC hazard projected to change at the end of the 21st century?
Figure 1c shows that at Hong Kong, the 2050–2100 TC hazard barely
changes from that duringpre-industrial conditions. This result is not unique
toHongKong–the total hazard ismodeled to decrease inmany regionswith
globalwarming (Fig. 3a), despite increases in thepotential intensity (Fig. S4).
In our downscaling projections, there is very little change to the global TC
frequency between the pre-industrial and the 2050–2100 periods (Fig. S2).
Thus, at least in this model, the decrease in TC hazard in spite of global
warming cannot be purely due to a decrease in TC frequency. There is,
however, significant uncertainty in global frequency when one considers
multiple models28,29.

It turns out that a large fraction of TC hazard change is linked to the
modeled pattern of warming in the Pacific. In CESM2-LENS2, there is an
“El Niño-like” trend in response to anthropogenic emissions; the SST gra-
dient between the West and East Pacific decreases by around 1 K through
2050–2100 (Fig. S5). In order to understand how the SST pattern trend
affects TC hazard projections, we decompose changes in the total future TC
wind hazard, ΔHtotal, into:

ΔHtotal ¼ ΔHP þ ΔH 6 P ð1Þ

where ΔHP and ΔH/P are the hazard changes between the pre-industrial
period and 2050–2100 that are, respectively, attributable, and not
attributable, to changes in the equatorial Pacific zonal SST gradient. Given
ΔHtotal and ΔH/P, we can infer ΔHP using Eq. (1).

We estimate ΔH/P by calculating the return period curve of TC hazard
only during years where the E-W index falls under a small, fixed range of
values. For example, Fig. 3b shows the spatial pattern ofΔH/P, conditioning
on the E-W index range of [−0.5, 0.5], which constrains the event set to
those during years where the E-W index is close to its climatological value
under pre-industrial conditions. The results are not sensitive to the exact
range used, as long as the range is small and sufficiently sampled in bothpre-
industrial and future climates (Fig. S3). We observe that ΔH/P is positive in
most of the West Pacific basin, with a more complicated multi-signed
pattern in the Atlantic basin.

The spatial pattern of ΔHP is shown in Fig. 3c, using Eq. (1). By
construction, the pattern of ΔHP bears a strong resemblance to that of El
Niño (Fig. 2d), namely that the intensity of the 1-in-100-year storm reduces
over the Northwest Pacific and Atlantic regions. These results suggest that
themodeled Pacific SST pattern of warming induces a change to the pattern
of TC hazard that strongly resembles that which is induced by El Niño.
Comparing Fig. 3b and c, we also observe that ΔHP is generally around the
same order of magnitude as ΔH/P. In fact, in many regions along coastal

Fig. 2 | Dependence of tropical cyclone hazard
on ENSO. a–dThe return period of a stormwith the
intensity of the 1-in-100-year storm, during various
labeled ENSO states, among the downscaled events
in CESM2-PI. Red and blue shading indicate
increased and decreased hazard, respectively. e The
same return period curves as Fig. 1c, except stratified
by ENSO phase over the PI-control simulation,
using the Niño3.4 index.

Fig. 3 | Decomposition of tropical cyclone hazard
changes. a Total change in the intensity of the 1-in-
100-year storm between 2050–2100 and pre-
industrial climate. b Change in hazard when only
considering years where the E-W index is in the
range [−0.5, 0.5]). c Change in hazard due to the
trend in the E-W index [a, b].
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Asia, the former is larger inmagnitude (and opposite in sign) than the latter.
In other words, in these regions, the SST pattern effect could act to offset
increases to TC hazard owing to other factors (such as a global increase in
potential intensity).

Of course, the magnitude of ΔHP will depend on the strength of the
trend in the equatorial zonal SST gradient, and this has a wide range across
the available ensemble climatemodels, both over the historical period and in
the future6,12,30. In addition,while theCESM2-LENS2downscaling showsno
significant change in TC frequency with warming (Fig. S2), an increase or
decrease in TC frequency would respectively amplify or reduce the TC
hazard change not attributable to the patterns of warming. It is also
important to stress that the pattern of ΔHP (Fig. 3c) looks like an ENSO
signal by construction. However, the pattern ofΔH/P (Fig. 3b) is not subject
to the same constraints.

A storyline approach to future warming patterns
There is compelling evidence emerging in recent studies that shows that the
“El Niño-like" pattern of warming in climate models may be incorrect5,31,32.
This implies that projections of regional tropical cyclone activity may be
incorrect as well. To understand how an increase in the equatorial Pacific
zonal SST gradient affects near-term TC hazard, we use the storyline
approach, in which one works through the detailed consequences of a
specific, plausible climate trajectory without trying to estimate its
probability33. We define near-term as the period between 2020–2060 and
assume that the change in the storyline’s E-W index, or EW0, follows the
observed linear trend from 1960-2020 (≈ −0.13 K per decade), and then
either (1) stops at 2020 and stays the same, or (2) continues through 2060.
To construct the TC hazard response under the “LaNiña-like” storyline, we
assume that theTChazard change perdegree of increase in theCESM2E-W
index can be used to predict the TC hazard change per degree of decrease in
the storyline E-W index. The TC hazard change in the storyline is thus
obtained by normalizing ΔHp by the magnitude of the decrease in the E-W
index (in the CESM2 simulations), and multiplying it by the desired
storyline change in theE-W index. In otherwords, given a returnperiod ofn
years, we take the 2060-2100 TC hazard change attributable to the E-W
index (Fig. 3c, for n= 100 years), and normalize it by EW, or the 2060–2100
average value of the E-W index in CESM2-LENS2. 2060–2100 is chosen
since the signal in the E-W index change is the largest in that time period

(Fig. S5). The local TC hazard change that is not associated with changes in
the E-W is kept the same.Thus, the total hazard change is assumed to follow
the form:

ΔHtotalðn; tÞ ¼ EW0ðtÞΔHPðnÞ
EW

þ ΔH 6 Pðn; tÞ ð2Þ

where t is time. Note that EW0 is negative (increase in the E-W temperature
gradient), and EW is positive (decrease in the E-W temperature gradient).

There are a few assumptions and limitations to this approach. First, Eq.
(2) explicitly assumes linearity in the relationship between TC wind hazard
and the Pacific zonal SST gradient. We also assume that TC frequency is
independent of the assumed storyline. Given the large uncertainty in future
TC frequency, this is the “null hypothesis” approach. The reader is referred
to Methods for more details on these assumptions.

Figure 4 shows the return period of the pre-industrial 1-in-100-year
storm in 2020–2060, under the two scenarios. If the observed E-W trend
stops at 2020, the 1-in-100-year stormbecomes the 1-in-50-year stormover
much of coastal Asia. For example, the 1-in-100-year storm is estimated to
return approximately every 55 years atManila, Philippines—nearly a 2-fold
increase in the hazard from pre-industrial conditions. In contrast, the
Atlantic basin hasmore of amixed signal, asΔHP owing to a “La Niña-like"
trend is opposite-signed of ΔH/P. If the trend further continues through
2060, our estimates show that in some locations, the 1-in-100-year storm
duringpre-industrial conditions could returnas frequently as every 25years.
AtManila, the continuation of the E-W trend increases the frequency of the
1-in-100-year storm to every 47 years by 2060.

Discussion
TC intensity has long been projected to increase with anthropogenic
emissions since potential intensity increases with warming34. Subsequently,
TC wind hazard is expected to increase, even if there is no change to the
global TC frequency. However, after downscaling CESM2 simulations
under an upper-middle future emissions scenario, we find that the TCwind
hazarddecreasesovermuchof theWesternPacific andAtlantic basins at the
end of the 21st century, despite there being no change to the global TC
frequency.We find thatmuch of this projected decrease in TCwind hazard
is attributable to a reduction in the mean equatorial zonal SST gradient

Fig. 4 | Tropical cyclone hazard in a La Niña-like
storyline. a Storyline scenario where the observed
(1960-2020) trend in the E-W index (dashed-red)
continues through 2060, and (red) stops at 2060.
b, cReturn period of a stormwith the intensity of the
1-in-100-year storm during pre-industrial condi-
tions, assuming the observed La Niña-like trend (b)
stops at 2020 and (c) continues through 2060. Red
shading shows increased hazard, while blue shading
shows decreased hazard.
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pattern, which induces an “El Niño-like” hazard change—decreased TC
hazard in both the Western Pacific and Atlantic basins. Given the dis-
crepancy between historical observed and modeled patterns of warming in
the tropical Pacific, we also use the storyline approach to understand how
near-term TC wind hazards in a warming world that has trended and
continues towards a “La Niña-like” state. In this case, TC wind hazard
dramatically increases over much of East Asia.

These results show that the SST pattern effect significantly contributes
to TC wind hazard in a changing climate. We find that changes in regional
SST of around 1.5° have around the same effect on TCwind hazard asmore
than 4° of tropical-averaged warming (Fig. S5). These results are perhaps
unsurprising given the greater efficiency by which regional SST perturba-
tions modulate TC-related variables, as compared to global SST perturba-
tions, owing to the large deformation radius of the tropics35,36.

In this study, we focused on natural and forced SST patterns in a single
model ensemble. As a result, we only usedone climatemodel, one emissions
scenario, and oneTCdownscalingmodel. Futureworkwould be prudent to
understand the full range of uncertainty using a variety of models. Never-
theless, we argue that warming patterns (and not just the warming mag-
nitude) are leadingorder contributors to futureTCwindhazard changes.As
a result, it remains of paramount importance for future research to uncover
the physical processes that control the pattern of Pacific warming in
response to anthropogenic emissions.

Methods
Weuse output from years 500–1499 (1000 years) of the CMIP6 CESM2PI-
control simulation37. We also use the ensemble members 1–10 of the
CESM2-LENS2project13. The 10 ensemblemembers are initialized from the
PI-control simulations, starting at year 1000, in increments of 20 years
(1021, 1041, 1061, etc.). Both the CESM2 PI-control and CESM2-LENS2
simulations have a nominal grid resolution of 1°.

We use the open-source TC downscaling model of 16, a derivative of
the MIT TC downscaling model38,39, to downscale CESM2-LENS2. The
modelworks by randomly seeding in space and timeweakprotovortices and
then evolves them in time according to the beta-and-advectionmodel17 and
the FAST intensity model18. The downscaling model takes as input
monthly-mean vertical profiles of temperature and specific humidity,
monthly-mean surface pressure and sea-surface temperature, andmonthly-
mean upper- (250-hPa) and lower- (850-hPa) zonal/meridional winds. The
covariance between daily-averaged, upper, and lower-level winds, is also
required to generate synthetic time series of environmental winds.

To diagnose the ENSO phase in Fig. 2, we use the Niño3.4 index,
defined as the average SST in region defined by the box of 5°S-5°N, and
170°W-120°W20. The reference state used for the index is the entire 1000-
year PI-control period. SinceENSOhas a positive amplitude bias inCESM2,
we define the ENSO phase and magnitude using percentiles. (1) Strong La
Niña, (2) Weak La Niña, (3) Neutral, (4) Weak El Niño, and (5) Strong El
Niño are defined using ENSO events with percentiles in the range of
0th–20th, 20th–33rd, 33rd–67th, 67th–80th, and 80th–100th, respectively40.
We average the ENSO index over JASO to alignwith the peak of thewestern
North Pacific TC season.

We also use the E-W index, defined in ref. 6, to quantify themismatch
in warming between the eastern and western Pacific. The E-W index is
computedby subtracting the SST in the range [140°E–170°E, 3°S–3°N] from
the SST in the range [170°W-90°W, 3°S-3°E]. The E-W index is also aver-
aged over JASO. While there are obvious differences between the Niño3.4
index and the E-W index, there is a very high correlation between the JASO-
averaged E-W and Niño-3.4 indices, in both HadISST (r = 0.90) and the
CESM2 PI-control runs (r = 0.78). Under warming, a reference state is
necessary to define the ENSO phases using theNiño3.4 index, which can be
complicated given the time-varyingnature ofwarming. In contrast, theE-W
describes the difference in warming between two parts of the Pacific basin,
and a reference state does not need to be defined.

There are a fewkey assumptions in the storyline approach. First,EW 0ðtÞ
is assumed to vary linearly in time, following each storyline (Fig. 4). Second,

we assume linearity in the relationship between TC wind hazard and the
Pacific zonal SST gradient. In other words, even though EW (the 2060-2100
average value of the EW index) is only positive (El Niño-like trend) in
CESM2, we use its relationship with ΔHp to project hazard changes under
scenarios where EW 0 is negative (La Niña-like trend). This assumption
should hold for “small” values ofEW 0.We do not have a set of climatemodel
simulations that show an increase in the equatorial zonal SST gradient in the
Pacific, and thus cannot confirmwhether this assumption is valid.Thirdly,we
assume that ΔH/P does not have a dependence on the sign of EW 0. This
assumption is questionable, especially if climate sensitivity depends on the
Pacific SST pattern. In addition, we assume that in the “La Niña-like"
storylines, the annual TC frequency in the West Pacific basin remains
unchanged from the TC frequency projected by the CESM2-LENS2 down-
scaling (the assumed TC frequency is shown in Fig. S2). Again, we cannot
confirm how and to what extent TC frequency would change in a “La Niña-
like"world.However,uncertainty inglobalTCfrequency is estimated tobeon
the order of −20% to 20%28, which, all else being equal, would change the
wind hazard by the same amount. In comparison to the storyline scenarios
shown in Fig. 4, the TC wind hazard changes by around 100%.

Finally, for each n, ΔHtotal is added to the return period curve under
pre-industrial conditions, giving a new return period curve with the effects
of bothΔHP andΔH/P included. The return period of the intensity of the 1-
in-100-year storm under pre-industrial conditions can then be computed
from these new return period curves.

Data availability
The CESM2model output used in this study is freely available on the high-
performance computing cluster at the National Center for Atmospheric
Research. Information on how to access it is located at https://www.cesm.
ucar.edu/community-projects/lens2/data-sets. The TC downscaling model
is freely available at https://github.com/linjonathan/tropical_cyclone_risk41.
The daily ERA5 data for zonal and meridional winds are available through
the C3S Climate Data Store via https://doi.org/10.24381/cds.bd0915c642.
The monthly mean ERA5 temperature and specific humidity are available
via https://doi.org/10.24381/cds.6860a57343. Themonthlymean ERA5 data
for sea-surface temperature and surface pressure fields are available through
the C3S Climate Data Store via https://doi.org/10.24381/cds.f17050d744.
The ERA5 reanalysis data are accessible by creating an account with the
Climate Data Store service, and usable according to ECMWF license to use
Copernicus products. The IBTrACS dataset is available online at NOAAvia
https://doi.org/10.25921/82ty-9e1622. The HadISST dataset is available
online at https://www.metoffice.gov.uk/hadobs/hadisst/45.
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