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ABSTRACT: A deep learning–based method augmented by prior knowledge of tropical cyclones (TCs), called

DeepTCNet, is introduced to estimate TC intensity and wind radii from infrared (IR) imagery over the North Atlantic

Ocean. While standard deep learning practices have many advantages over conventional analysis approaches and can

produce reliable estimates of TCs, the data-driven models informed by machine-readable physical knowledge of TCs could

achieve higher performance. To this end, two approaches are explored to develop the physics-augmented DeepTCNet:

(i) infusing the auxiliary physical information of TCs into models for single-task learning and (ii) learning auxiliary physical

tasks for multitask learning. More specifically, augmented by auxiliary information of TC fullness (a measure of the radial

decay of the TC wind field), the DeepTCNet yields a 12% improvement in estimating TC intensity over the nonaugmented

one. By learning TC wind radii and auxiliary TC intensity task simultaneously, the model’s wind radii estimation skill

is improved by 6% over only learning four wind radii tasks and by 9% over separately learning a single wind radii task.

The evaluation results showed that the DeepTCNet is in-line with the Satellite Consensus technique (SATCON) but

systematically outperforms the advanced Dvorak technique (ADT) at all intensity scales with an averaged 39% en-

hancement in TC intensity estimation. The DeepTCNet also surpasses the Multiplatform Tropical Cyclone Surface Wind

Analysis technique (MTCSWA) with an average improvement of 32% in wind radii estimation.

KEYWORDS: Tropical cyclones; Satellite observations; Neural networks; Deep learning

1. Introduction

Estimating the intensity and wind radii of tropical cyclones

(TCs) is the first step in the process of monitoring and fore-

casting these destructive systems. However, making accurate

estimates of TC intensity and size has been a long-standing

challenge in tropical meteorology, and is limited by the avail-

able observations and technologies (e.g., Landsea and Franklin

2013; Knaff and Sampson 2015). Besides, global TC warning

centers routinely require multiple measures of TC character-

istics. These include two measures of TC intensity, the maxi-

mum sustained surface wind (MSW) and minimum sea level

pressure (MSLP), together with different TC size measures,

generally provided by forecast centers as ‘‘wind radii,’’ in-

cluding the gale-force (34 kt; 1 kt 5 0.51m s21; R34), storm-

force (50 kt; R50), and hurricane-force (64 kt; R64) wind radii

in geographic quadrants (i.e., in the northeast, southeast,

southwest, and northwest directions), and the radius of maxi-

mum wind (RMW). The production of such a large number of

estimates in real time may be difficult and time-consuming

(Sampson et al. 2018).

Operational TC intensity estimation still relies primarily on

the Dvorak technique (Velden et al. 2006), which uses the

cloud features in infrared (IR) and/or visible satellite images to

assign TC intensity. As the complex TC dynamics have been

comprehensively abstracted as cloud features, the Dvorak

technique can provide relatively reliable intensity estimates,

and has been one of the most successful satellite applications

for TC analysis over more than four decades (Velden et al.

2006). Nonetheless, this technique is subjective, so its esti-

mation accuracy depends on the skills of analysts. To increase

the objectivity and the automatization of IR-based intensity

analysis, advanced versions of the Dvorak technique (e.g.,

Olander and Velden 2007; 2019) and many other algorithms

have been proposed (e.g., Kossin et al. 2007; Ritchie et al.

2012; Fetanat et al. 2013). However, most of these algorithms

have proved to be less reliable than the Dvorak technique,

mainly because they are based on conventional algorithms,

such as principal component analysis, which extract only very

limited features from the satellite data. The situation is sim-

ilar in other satellite-based TC intensity estimation methods

(e.g., Demuth et al. 2004, 2006; Jiang et al. 2019). The method

that has the best accuracy in TC intensity estimation at

present is the Satellite Consensus technique (SATCON),

which is a weighted consensus algorithm designed to opti-

mize the strengths and minimize the weaknesses of multiple

IR-based and microwave-based techniques (Velden and

Herndon 2020). The typical qualitative uncertainty level of

the Dvorak technique, ADT and SATCON is around 10 kt

for intensity in wind (Knaff et al. 2010; Olander and Velden

2019; Velden and Herndon 2020).

The satellite-based estimation of TC wind radii is more dif-

ficult. There is no such widely applied technique as the Dvorak

method for wind radii estimation, given that the physical rela-

tionship between the convection and the wind field is less clear

(e.g., Lajoie and Walsh 2008). The outer-core wind radii (e.g.,

R34) are among the more tractable TC wind radii and

the scatterometer is one of the best spaceborne instruments for

estimating outer-core wind radii (e.g., Brennan et al. 2009).Corresponding author: Zhe-Min Tan, zmtan@nju.edu.cn

JULY 2021 ZHOU AND TAN 2097

DOI: 10.1175/MWR-D-20-0333.1

� 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright
Policy (www.ametsoc.org/PUBSReuseLicenses).

Unauthenticated | Downloaded 09/16/24 02:02 AM UTC

mailto:zmtan@nju.edu.cn
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses


Scatterometer measurements operating at Ku-band have an

issue to be affected by heavy rain in TCs and saturate for wind

speeds near 50 kt (Brennan et al. 2009), but the lower C-band

frequencies are less sensitive to rain and saturate at slightly

higher wind speeds, which is close to 70 kt (Stoffelen 1998;

Stoffelen et al. 2017). The L-band radiometers, which do not

suffer from signal saturation at high winds and are minimally

affected by rain, are important tools to determining the R34,

R50, and R64 in TCs (e.g., Reul et al. 2017). Other methods

that show skill in deriving TC wind radii include IR represen-

tations (e.g., Mueller et al. 2006; Kossin et al. 2007; Knaff et al.

2016; Dolling et al. 2016), microwave sounder proxies (e.g.,

Demuth et al. 2006), multi-satellite-platform analysis (Knaff

et al. 2011), and the reflectometry-based technique (Morris and

Ruf 2017). The estimation of the radius of maximum wind,

which poses difficulties for observation because of the turbu-

lent nature of the inner core of a TC (e.g., Chavas et al. 2015),

however, remains a challenge.

Errors in the best track intensity have been estimated to be

;10%–20%, and the errors for best track wind radii could be

as high as 40%, depending on the quality and quantity of the

available observations (Landsea and Franklin 2013; Knaff and

Sampson 2015). However, accurate TC intensity and wind radii

estimates are crucial to making forecasts and mitigate the

losses due to TC-related hazards (e.g., Sampson et al. 2010;

Torn and Snyder 2012;DeMaria et al. 2014; Bender et al. 2017),

and translate to the postprocessed guidance such as wind speed

probabilities (e.g., DeMaria et al. 2013). Therefore, more ac-

curate estimations of TC intensity and wind radii are still badly

needed. Moreover, with the recent advances in the satellite

observations of TCs, updating the analysis technique, espe-

cially objective algorithms that can interpret complex TC dy-

namics from the satellite observations, is of vital importance.

Deep learning is a type of artificial intelligence algorithm

that has revolutionized computer vision, language recognition,

game strategy and many research fields (e.g., Hinton et al.

2012; LeCun et al. 2015; Silver et al. 2016; Krizhevsky et al.

2017). More recently, deep learning is also providing insights

into atmospheric science with broad applications, which cover

pattern detection, physical parameterization, and state pre-

diction (e.g., Rasp et al. 2018; Ham et al. 2019; Reichstein et al.

2019). Recent works have also begun to apply deep learning to

TC intensity estimation. Pradhan et al. (2018) is among the

earliest applications of deep learning to estimate TC intensity

from IR imagery. However, this work is somewhat incomplete

because they did not use an independent dataset for evalua-

tion. Chen et al. (2019) used a larger amount of dataset (global

TC cases) than Pradhan et al. (2018) and utilized IR imagery

and passive microwave–retrieved precipitation to train deep

learning models. However, the optimal estimates of Chen et al.

(2019) are not available in real time due to the intermittent

microwave rain-rate data and postanalysis smoothing required.

Wimmers et al. (2019) estimated TC intensity from passive

microwave imagery, which has a major advantage in showing

convective features of TCs. However, at present, there is no

deep learning application for TC size estimation. Moreover,

despite the challenges of deep learning, such as the high cost of

data acquisition and making mistakes on what would appear

trivial to a human for lacking any general knowledge of the

world, little work has successfully capitalized on physical or

prior knowledge to improve deep learning for TC applications.

The main target of this study is to harness deep learning to

produce more accurate estimations of both TC intensity and

wind radii from IR imagery. Moreover, we endeavor to aug-

ment the deep learning models by incorporating prior knowl-

edge of TCs into the model.

The rest of this paper is organized as follows. In the next

section, we present a description of the data and the deep

learning backbone we selected to build our method. We then

describe the approaches to augment deep learning models for

intensity estimation and evaluate model performance in

section 3. Section 4 provides the augmented deep learning for

wind radii estimation as well as the evaluation. The discussion

on our method and the summaries of the findings are pre-

sented in sections 5 and 6.

2. Data and method

a. Data

Necessary information is required to set up the input–output

pairs to train the deep learning models. In this paper, the

outputs/labels given to the models were the TC intensity

(MSW andMSLP) and wind radii (R34, R50, R64, and RMW)

from the postseason/final best track dataset. These data were

obtained from the IBTrACS database (Knapp et al. 2010). The

primary inputs of the models are the TC-centered IR images,

which were from the Hurricane Satellite dataset (HURSAT-

B1; 3-h interval; 8-km resolution; Knapp and Kossin 2007). As

the HURSAT-B1 images are only available up to 2016, we

used the IR images from the GridSat-B1 archive (Knapp et al.

2011) from then onward. GridSat-B1 has the same temporal

and spatial resolution as theHURSAT-B1 but at a global scale.

Geostationary satellite IR imagery was used for its real-time

availability and high spatial and temporal resolution. We also

use auxiliary storm information as inputs. These include the TC

fullness (Guo and Tan 2017), location and motion of a storm.

The TC fullness is a new concept of TC structure, which is

defined as the normalized extent of the outer-core wind skirt,

i.e., (R34 2 RMW)/R34. The auxiliary information was ob-

tained from the operational Tropical Cyclone Vitals Database

(TC Vitals1) used for initializing numerical weather prediction

model guidance (e.g., Tallapragada et al. 2014; Bender et al.

2017). For the cases with invalid wind radii estimates from TC

Vitals, the corresponding TC fullness is set as zero. Only North

Atlantic TCs with a lifetime-maximum intensity of at least

34 kt (i.e., tropical storms) are considered. Extratropical sys-

tems and tropical waves were removed.

In the data preprocessing, sample-specific normalization was

applied to IR images by subtracting the average and dividing

1 In theAutomated Tropical Cyclone Forecast System (Sampson

and Schrader 2000), these are the CARQ entries in the aid deck

(adeck). The TC Vitals has also been referred to as ‘‘the bogus’’ in

past literature.
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by the standard deviation. The IR images were then cropped

only to include the center area. For intensity estimation, im-

ages of 58 3 58 pixels were used, which is found to work well

and effectively in our practice. For size estimation, larger im-

ages of 156 3 156 pixels were used to include the outer-range

cloud information, which is shown to be necessary to produce

quality outer-core wind radii estimates. Given the R34, R50,

and R64 are recorded for each quadrant (NE, SE, SW, and

NW) in the IBTrACS database, the nonzero-azimuthal aver-

age was applied to get the wind radii labels. Note that the R34,

R50, and R64 denote the azimuthally averaged wind radii data

hereafter. As there is no guarantee that all of the wind radii

labels from IBTrACS are physically consistent; for example,

the R50 may be smaller than the R64, even though this ar-

rangement is not physically possible. Therefore, wind radii

labels that did not satisfy the relationship R34 . R50 . R64

and R34 $ RMW, R50 $ RMW, R64 $ RMW (Kossin et al.

2007) were removed.

The data were then split into three blocks (Table 1): the

training set including the 2005–15 cases; the validation set

consisting of 2016 and 2018 cases; and the test set made up of

2017 and 2019 cases. 2005, when the RMW in the IBTrACS

became available, is chosen as the accordant start season for

the training data. The MSW and MSLP labels from 1990 to

2004, which are available in IBTrACS, are used to test the

influence of training data amounts and to build a final intensity

estimation model (sections 3c and 3d). The best track fixes

have aircraft reconnaissance observations within 3 h (recon-

aided hereafter) in the test set, which have higher quality,

therefore, are used as ‘‘ground truth’’ to evaluate the perfor-

mance of the DeepTCNet in sections 3d and 4b.

b. Selection of the DeepTCNet’s architecture

In this study, convolutional neural networks (CNNs) (LeCun

et al. 2015) are selected as the deep learning backbone of

DeepTCNet to estimate TC intensity and wind radii from IR

imagery. CNNs are a particular class of artificial neural net-

works considered to be the state-of-the-art tool for analyzing

image data (Simonyan and Zisserman 2014; Krizhevsky et al.

2017). CNNs assign importance to and transfer various as-

pects in the input image through stacks of convolutional,

pooling, and fully connected layers. Overall, the whole network

approximates a nonlinear differentiable function between the

input and the outcome of interest. Taking advantage of the

convolutional filters, the hierarchical cascade, and other specific

designs in the architecture, CNNs are very good at capturing the

spatial dependencies and extracting intricate patterns in an im-

age. They are also useful in uncovering new properties in the

data (LeCun et al. 2015). Moreover, they also have the great

advantage of requiring little manual feature design/extraction

compared to other conventional machine learning algo-

rithms (LeCun et al. 2015; Goodfellow et al. 2016). CNNs

now have growing applications in atmospheric science, for

example, to detect various weather phenomena in obser-

vations and climate models (e.g., Liu et al. 2016; Lagerquist

et al. 2019; McGovern et al. 2019), represent subgrid-scale

processes (e.g., Bolton and Zanna 2019; Han et al. 2020) and

improve the weather predictions and climate projections

(e.g., Ham et al. 2019; Sønderby et al. 2020; Weyn et al.

2020). Considering the efficacies and advantages of CNNs,

we decided to use them for modeling TC intensity and wind

radii from IR imagery.

Different CNNs have different architectures, in terms of

the types of layers (e.g., convolutional, pooling, and fully

connected layers), depth (the number of layers which have

trainable parameters), and the number and kernel size of

convolutional filters (the kernel size refers to the width3 height

of the filter mask) of these layers (Goodfellow et al. 2016;

Ebert-Uphoff andHilburn 2020). Many heuristics of the CNNs

have been developed, for example, as the networks go deeper

(have more trainable layers), they could learn more abstract

representations that disentangle and hide explanatory factors

of variation behind data (e.g., Goodfellow et al. 2016). A

working architecture, however, is usually found by trial and

error. To select a principal architecture from the wide choices

of network configurations for our application, we tested five

modern architectures at or near the state-of-the-art (Table 2)

(Simonyan and Zisserman 2014; Szegedy et al. 2016; He et al.

2016; Krizhevsky et al. 2017; Chollet 2017), and assessed the

influences of two important aspects of CNN design, i.e., the

depth and the kernel size in the first convolutional layer.

Because the performance of the model varies slightly even

with the same training scenario, we trained the model five

times for each scenario with the 2005–15 training data. The

averaged performance with respect to the test dataset was

then used to represent the grouping. The results (Tables 2

and 3) show that the configuration that yielded the best per-

formance was VGGNet with 13 layers and small (3 3 3)

convolutional filters, which therefore was selected as the

backbone of the DeepTCNet. Given the infinite number of

CNN hyperparameters combined, our proposed architecture

could still be suboptimal, but it works well in practice.

As shown in Fig. 1, the architecture of DeepTCNet

consists of 10 convolutional layers (CONV1–10) and 3

fully connected layers (FC11–13). The channel depths of

CONV1–10 are 64, 64, 128, 128, 256, 256, 512, 512, 512, and

512, respectively, and the sizes of FC11–13 are 128, 64, and

1, respectively. There is a 3 3 3 patched maxpooling layer

following every two CONV. Flattening is applied before

TABLE 1. The data size of the labels of training, validation, and

test datasets for 1-min maximum sustained surface winds (MSW),

minimum sea level pressure (MSLP), radius of maximum wind

(RMW), and radii of 64-, 50-, and 34-kt winds (R64, R50, andR34).

The units for MSW and MSLP are kt and hPa, respectively. The

units for RMW, R64, R50, and R34 are n mi (1 n mi ’ 1.85 km).

TC

parameter

Training dataset:

2005–15

(1990–2015)

Validation

dataset:

2016, 2018

Test

dataset:

2017, 2019

MSW 6695 (16 136) 1435 1463

MSLP 6695 (16 136) 1435 1463

RMW 4841 1085 1168

R64 1707 380 567

R50 2897 622 775

R34 4841 1085 1168
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the fully connected layers and ReLu activation functions

are used.

c. Development and evaluation of the DeepTCNet

As represented in Fig. 1, DeepTCNet is built up in the

single-task (STL) and multitask learning (MTL) frameworks.

STL is a standard methodology that trains deep learning

models to be optimized for one desired task and usually per-

forms well given abundant training data.MTL, however, learns

multiple tasks simultaneously. The unique advantage of MTL

is that it can leverage shared information and/or the relation-

ship contained in related tasks. Therefore, MTL could improve

the accuracy and generality of the model, especially when the

training data are scarce (e.g., Zhang and Yang 2017). In this

study, STL is applied for intensity (MSW and MSLP) estima-

tion and MTL for critical wind radii (RMW, R64, R50, and

R34) estimation, for larger number of high-quality TC intensity

samples is available for training than the TC wind radii

(Table 1). Besides, the use of MTL to train the model for

learning the wind radii simultaneously could also benefit from

the underlying physical relationship of the integral TC wind

field structure. In MTL, the fully connected layers were sepa-

rated into multiple flows to learn task-specific model parame-

ters, which could be essential in considering the independent

features among inner- and outer-core wind radii tasks (e.g.,

Weatherford and Gray 1988; Chavas et al. 2015). However, the

subnets before the fully connected layers in MTL share the

same parameters among tasks to learn transferable features

across different tasks. As also displayed in Fig. 1, auxiliary

input/information, if present, was concatenated to model in the

first fully connected layer.

One challenge in the applications of CNNs to many TC-

related research problems is the large amount of training data

that required may not be available. The fact of being purely

data-driven and black box also makes the CNNs not easy to

obtain predictions with high accuracy and reasonableness. To

alleviate these problems, research efforts have been made by

integrating prior knowledge/physics into the model develop-

ment (e.g., Raissi et al. 2019; Snaiki and Wu 2019). Instead of

leveraging physics-based formulas as constraints, this study

developed a more general physics-augmented deep learning

by expanding the input/output learning space. More specifi-

cally, auxiliary physical information was used to augment the

intensity estimation model (section 3), while learning an

auxiliary physical task in MTL was applied to augment the

size estimation model (section 4). Since the DeepTCNet

approximates a function between the input data and output

targets, extending either the input, i.e., incorporating auxil-

iary physical information or output space, i.e., introducing

auxiliary physical tasks based on prior knowledge of TCs

could augment the model to learn a more physically gener-

alized function.

All the models were trained by minimizing the loss function,

i.e., the mean absolute error (MAE) between the network’s

outputs and the best track labels. We used MAE as the loss

function for it is robust to abnormal data. For MTL-based

networks, a weighted sum of the losses of multiple tasks was

used, whose weights were trainable and self-updated during

training (Cipolla et al. 2018). The advantage of this loss is that it

can bring all losses to the same scale to avoid one task domi-

nating the overall loss. Besides, the multitask learning model

learns to output inner- to outer-core wind radii, which means

that a multitask label is required for each data case. Therefore,

when a storm has not reached a specific wind threshold, the

missing radii label was set as the RMW. For example, if the

case has an intensity of 60 kt, the corresponding multitask label

is set as [RMW, RMW, R50, R34]. For such a case, the multitask

learning model still learns to search for proper features that can

produce reliable inner- to outer-wind radii estimation.

Other hyperparameters and evaluations for the model de-

velopment are as follows. As also noted in section 2a, each

model in this paper was trained five times in each scenario and

the averaged performance (in terms of MAE) with respect to

the test dataset is selected to represent the model. The model

was trained for 200 epochs, and only the learned parameters

with the lowest MAE on the validation dataset were saved. In

sections 3d and 4b, the mean estimate of intensity or size for

each TC case, which was obtained by the five-times-repeated

TABLE 2. Performance and key configuration of different con-

volutional neural network architectures for the DeepTCNet model.

The second and third columns are the network depth and the kernel

size in the first convolutional layer, respectively. MAE is the mean

absolute error for TC intensity (maximum surface wind; kt) esti-

mation counted with the test dataset. AlexNet is a landmark CNN

architecture that almost halves the object recognition error rate

(Krizhevsky et al. 2017). VGGNet is a deeper network thanAlexNet

and uses more efficient 3 3 3 convolutional kernels (Simonyan and

Zisserman 2014). GoogLeNet introduces parallel towers of con-

volutional kernels with different sizes (Szegedy et al. 2016). ResNet

enables CNNs to go very deep by using skip connection (He et al.

2016). Xception is an adaption of GoogLeNet but depthwise sepa-

rable convolutions are included and it has much lighter parameters

(Chollet 2017). The lowest error is shown in boldface.

CNN architecture Depth Kernel size MAE (kt)

AlexNet 8 12 12.0

VGGNet 13 3 10.3
GoogLeNet 22 7 11.4

ResNet 34 7 12.2

Xception 37 3 10.6

TABLE 3. The mean absolute errors on the test dataset for TC

intensity estimation (MAE; unit: kt) for different depths and kernel

sizes in the first convolutional layer of the VGGNet. The archi-

tectures of networks tested are the same asVGGNet in Table 2, but

for the depth or kernel size. The MAEs are counted with the val-

idation dataset. The depth and kernel size settings with the lowest

estimation error are shown in boldface.

Depth MAE (kt) Kernel size MAE (kt)

8 10.6 3 10.3

13 10.3 5 10.4

22 11.2 7 10.5

34 11.0 9 10.8

37 11.3 11 10.9
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training, was used to present the final estimate of the optimal

model. The Adam optimization scheme (Kingma and Ba 2014)

with default configuration parameters was used as the learning

strategy. The learning rate was fixed as 13 10–3. The batch size

(meaning that the data are randomly packed into small groups

to be fed to the network) was empirically set 48. The algorithms

were built using the open-source Python library Keras (https://

keras.io) with Tensorflow (http://www.tensorflow.org) as the

backend and all experiments were run on a graphics processing

unit (Nvidia Tesla V100).

3. DeepTCNet for intensity estimation

The sensitivity test applied in the previous section to select

the architecture of DeepTCNet has demonstrated a baseline

configuration, i.e., the VGGNet with 13 layers and very small

3 3 3 convolutional kernels, can obtain reliable intensity esti-

mates of TCs from IR imagery. However, such a model could

be data inefficient, which means that they are essentially de-

pendent on the quantity and quality of training data yet lack

physical knowledge of the natural world. To improve the

model for estimating TC intensity, we first address a method to

incorporate auxiliary physical information of TCs for aug-

mentation in this section. Sequential IR images, which repre-

sent the continuous TC development, are then introduced to

improve intensity estimation. In addition, the influence of the

amount of training data is discussed. Finally, we will finally

integrate all the positive settings to build up an optimal

DeepTCNet model for TC intensity estimation.

a. Auxiliary physical information augments learning

An effective and practical approach to capitalizing on prior

physical knowledge of TCs is explored to alleviate the risks of

the deep learning model for naively memorizing training data,

such as the pseudo features and data bias in the IR imagery and

the intensity labels. The hypothesis is that the auxiliary phys-

ical information of TCs introduces an additional physical re-

lationship between the input space and the output TC intensity

target; therefore, it could constrain the model to produce

better TC intensity estimates.

The auxiliary physical information used in this study include

the surface information (i.e., a factor valued 0 or 1 to indicate

whether the TC is over land or not), the storm age (the period

since the TC become a named storm in the unit of the hour;

FIG. 1. The configuration of DeepTCNet in both single-task and multitask learning frameworks.
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e.g., Kossin et al. 2007), the storm’s translation speed (Mei

et al. 2012) and the TC fullness (Guo and Tan 2017). The TC

fullness is defined as the ratio of the extent of the outer-core wind

skirt to the outer-core size of the TC, i.e., (R34 2 RMW)/R34,

which is a new concept for the representation of the storm

wind structure and has a good physical relationship with TC

intensity and intensification (Guo and Tan 2017).

To compare the effect of the auxiliary physical information,

the model (VGGNet in Table 2) that only takes in the current

IR imagery and output theMSW intensity is used as the control

run (CNTL) model. Its estimation error on the test dataset

(MAE 5 10.3 kt) thus serves as the error baseline. As illus-

trated by the learning curves in Fig. 2a, integrating the auxiliary

physical information made the model achieve better perfor-

mance than the CNTL on the validation dataset.Moreover, the

performance with respect to the test set for models augmented

by the landfall information, storm speed, storm age, the TC

fullness, and the combination of all the auxiliary information is

10.2, 10.3, 9.6, 9.1, and 8.6 kt, respectively. The results show

that incorporating TC wind radii structure description, i.e., the

TC fullness, caused the largest error reduction (12%) in esti-

mating TC intensity over the CNTL. Although it is impossible

to derive TC intensity from the TC fullness directly, the TC

fullness has shown to be a very useful auxiliary information to

augment themodel for intensity estimation. Since there exists a

good physical relationship between the intensity and the radial

wind structure of TCs, i.e., the TC fullness (Guo and Tan 2017),

adding the TC fullness as an auxiliary input factor is equivalent

to imposing a constraint between the TC wind field structure

and the targeted output intensity, which could be the cause of

the improvement. The storm age also contributed to a 7%

error reduction in estimating MSW compared to the CNTL. A

general characteristic of TC intensity evolution conveyed by

the storm age could be the reason. That is, the model could be

constrained by the early storm age to carefully give low-value

estimates of intensity instead of starting with larger ones. The

storm speed and surface information have a small contribution

in improving the TC intensity. Overall, the model augmented

by the auxiliary information combined achieved the best per-

formance on the test set (17% improved than the CNTL).

Besides, Fig. 2a illustrates that adding auxiliary physical in-

formation resulted in the estimation errors decreasing at an

early stage of the learning. This suggests that the physical in-

formation may also help discard some implausible features in

the data, hence accelerating the learning.

b. Sequential IR imagery helps to improve

Meteorologists track cloud features through successive periods

of TC development to help determine the intensity (Velden et al.

2006). Therefore, it is natural to ask whether the deep learning

model can improve accuracy by including recent images of a TC.

In this study, we used a sequence of IR images at 6-h intervals

from the previous 18, 12, or 6 h before the current image.

As shown in Fig. 2b, MSW estimation errors consistently

decrease when previous IR images were included, and the

result holds on the test set. The highest performance was

achieved by using a sequence of images covering an 18-h pe-

riod, and this has led to an error reduction of 6% lower than

CNTL (with respect to the test set). This confirms that physical

information on how the TC changes with time in the sequential

images can benefit the intensity estimation. Likewise, the risk

of important features disappearing in one IR image is also al-

leviated. However, note that using images that are too old (e.g.,

24 h or earlier) does not improve the estimation and may even

harm the estimation skill as the systems undergo rapid intensity

change. Better results may be achieved by using hourly or even

higher-frequency IR data (e.g., Himawari-8, GOES-16/-17 with

10-min global coverage) and including a channel-wise attention

module to improve the representation power of the model by

focusing information of interest (e.g., Woo et al. 2018).

c. Sensitivity to the amount of training data

The backbone of DeepTCNet is CNN of complex architec-

ture and heavy parameters (;10million trainable parameters),

which usually rely on a large-sample-size dataset and many

strategies to perform well (e.g., Goodfellow et al. 2016).

However, the large labeled datasets used in computer vision,

such as the ImageNet could not be available in Earth science.

FIG. 2. Learning curves, i.e., mean absolute errors for the in-

tensity estimation on the validation set during each training epoch

of DeepTCNet developed with (a) different auxiliary information

and (b) successive IR sequences of different time span.
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Therefore, it is important to ask how the training data size

could impact the intensity estimation of TCs.

To test the impact of training data size, more intensity rec-

ords from the IBTrACS database from 1990 to 2004 were also

included as training data (Table 1). The 4000, 8000, 12 000, and

16 000 instances were then sampled from the whole 1990–2015

training data. These samplings follow an identical distribution

in which the ratio of the number of tropical depressions and

tropical storms (MSW , 64 kt), minor hurricanes (64 #

MSW, 96 kt), and major hurricanes (MSW$ 96 kt) is 0.7:0.2:

0.1. Moreover, the influence of the rotation augmentation,

which is a commonly applied data augmentation technique in

the context of deep learning, is also explored.

As illustrated in Fig. 3, more training data leads themodel to

achieve lower intensity estimation errors, as expected. Besides,

themodel trained with the rotation augmentation had a further

enhancement in estimating the TC intensity. The model trained

with 16 000 samples together with the rotation augmentation has

the lowest estimation error on the test dataset (9.0 kt), which is

in-linewith themodel trainedwith the 2005–15 training data and

augmented by the TC fullness. Figure 3 also shows that the

model’s improvement gained by including more observational

samples is more evident than by rotation augmentation. This

result suggests that enlarging the training dataset by observa-

tional cases is key to improving the deep learning–based model.

Likewise, this sensitivity test was based on the intensity, which

has more quality-consistent data than wind radii. We found that

includingmore training samples of thewind radii labels obtained

from the TC Vitals database, which is not postanalyzed thus

could be of poor quality, does not help to improve model per-

formance, meaning that data quality is also important.

d. Performance evaluation

A final intensity estimation model named DeepTCNet-I is

developed by combining all the beneficial training settings. The

settings include using the auxiliary information combined

(storm age, storm speed, surface information and the TC full-

ness), multichannel images of IR sequence (previous 18, 12,

6 h, and current IR), more training data (the best track inten-

sity labels from IBTrACS database for the TCs in 1990–2015)

and the rotation augmentation.

The promising accuracy of the DeepTCNet-I across nearly

all TC intensity scales is illustrated in Fig. 4. The Pearson

correlation coefficient (R) between the DeepTCNet-based

MSW (MSLP) and the recon-aided best track ‘‘ground truth’’

in the test set is 0.97 (0.97). The accuracy also holds with re-

spect to the test set of 1463 samples (R 5 0.97). To better

evaluate the intensity estimation accuracy of the DeepTCNet

method, we compared the DeepTCNet-I with two benchmark

intensity estimation methods, the IR-based ADT method

(Olander and Velden 2019) and the multi-satellite-based

SATCON method (Velden and Herndon 2020). As revealed

in Fig. 5, the DeepTCNet systematically outperforms the ADT

method for all intensity categories. The overall improvement

of theDeepTCNet over theADT is 39% forMSWand 33% for

MSLP estimation (Table 4). These improvements are signifi-

cantly different from zeros with a 99% confidence level in the

Kolmogorov–Smirnov test. Since both the DeepTCNet

and ADT are primarily based on IR imageries, the result

implies that the DeepTCNet method can dramatically

improve the efficacy of information in the IR observations.

The DeepTCNet overall is in comparison with the SATCON.

However, it tends to handle weaker systems (TD/TS and minor

hurricanes) better than the SATCON. The negative bias for

the MSW estimation for category-5 hurricanes is evident for

DeepTCNet. The high percentage of tiny unresolved eyes at

the strong intensities could be a cause for this underestimation.

Given the microwave sensors can detect clear eye structure in

strong intensities, SATCONwould have better estimates of the

intense TCs and thus outperforms the DeepTCNet and ADT

for these cases. The underestimation of intense hurricanes

could also reveal a real bias of the best track intensity dataset

used to train the DeepTCNet. That is, we are detecting higher

intensities than before as observations increase. Since the

DeepTCNet-I was trained on historical data of TCs in the

1990–2015 seasons, it would also lack the ability to produce

newly observed large intensity estimates based on higher-

temporal/-spatial-resolution IR data and improved aircraft

reconnaissance.

As the DeepTCNet-I is trained with the best track intensity

data of Atlantic TCs, and 70% of the data were solely sup-

ported by satellite observations (Landsea and Franklin 2013;

Torn and Snyder 2012), it is natural to speculate that the best

DeepTCNet-I can do is to reproduce the Dvorak method

(Velden et al. 2006; Knaff et al. 2010). However, Table 5 shows

that the DeepTCNet-I also performs better than the subjective

Dvorak2 method based on 2 years of homogeneous testing

data. Furthermore, the relative error levels of DeepTCNet-I

FIG. 3. Mean absolute errors of MSW (kt) on the test dataset

produced by the DeepTCNet obtained by different training data

sizes. The model trained with rotation augmentation is denoted as

ROT (dashed line).

2 The subjective Dvorak intensity estimates were obtained from

the ATCF fixes files in which the intensities are indicated as DVTS

in the fifth column.
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FIG. 4. Scatterplots of the DeepTCNet-estimated intensity (MSW, MSLP) and wind radii (RMW, R64, R50, and

R34) vs the 63-h recon-aided best track records for the Atlantic TCs in 2017 and 2019.
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are counted and compared with the intrinsic data uncertainty

in the best track (Fig. 6). For aircraft/satellite monitoring and

for U.S. landfalling cyclones, the relative uncertainty is about

15% for tropical storms, ;10% for category-1 and -2 hurri-

canes,;8% for major hurricanes, and;10% for all categories

(Landsea and Franklin 2013). In comparison, the relative error

of the DeepTCNet-based MSW for the recon-aided testing

cases (N 5 485) is ;10% for tropical storms, ;10% for

category-1 and -2 hurricanes, ;7% for major hurricanes, and

;8% for all categories, which is near the uncertainty in the

recon-aided best track intensity data. For the best track cases

without aircraft reconnaissance fixes within63 h in the testing

dataset (N 5 978), the relative error of the DeepTCNet-based

MSW is 10%, which is lower than the inherent uncertainty of

the satellite-only best track estimates (Fig. 6). This suggests

that the DeepTCNet has the potential to improve the accuracy

of intensity estimates when it is incorporated in the poststorm

intensity analysis. In addition, a more accurate version of

DeepTCNet-I could be obtained by fine-tuning/transfer learning

with the recon-aided best track intensity labels in future work.

To note, however, the data uncertainties of best track were

obtained subjectively (Landsea and Franklin 2013).

The error metrics for the MSW estimation of DeepTCNet-I

also suggest a comparatively better performance over the

previous deep learning–based intensity estimation methods.

The root-mean-square estimation errors (RMSE) of MSW in

Pradhan et al. (2018) is 10.2 kt (11.4 kt for a recon-aided

dataset). Chen et al. (2019) conducted post smoothing pro-

cure to improve their intensity estimation accuracy. That is, the

RMSE decreased from 10.4 to 8.7 kt (20% improvement) by

applying a five-point weighted average. Given such post-

analysis smoothing requires the past and future intensity esti-

mates, which is not valid for near-real-time estimation, and the

other deep learning applications do not apply postanalysis, we

used the 10.4 kt to represent Chen et al. (2019). And note that

Chen et al. (2019) reported a 32% improvement than the ADT

technique by a homogeneous comparison based on 144 sam-

ples of TCs in 2017. Wimmers et al. (2019)’s RMSE ofMSW as

14.3 kt (10.6 kt on a recon-influenced dataset). In comparison,

the RMSE of DeepTCNet-I on the validation dataset is 7.7 kt

(8.7 kt on the recon-aided test dataset), which is lower than the

other deep learning methods. The superiority of DeepTCNet-I

in terms of the lowest RMSE could because of incorporating

some physics of TC into algorithms. However, an objective

comparison of all the deep learning–based models using ho-

mogeneous testing data is required in the future.

4. DeepTCNet for wind radii estimation

This section sets up theDeepTCNet to estimate critical wind

radii (R34, R50, R64, and RMW) of TCs from IR imagery.

FIG. 5. Performance of (a) DeepTCNet MSW estimates (kt) and

(b) MSLP estimates (hPa) against ADT and SATCON as a func-

tion of TC intensity (MSW) bins (kt; x axis). The metrics are

counted using the 63-h recon-aided best track records for the

Atlantic TCs in 2017 and 2019, with 95% confidence intervals ob-

tained by bootstrapping.

TABLE 4. Homogeneous comparison between the ADT, SATCON,

and DeepTCNet estimates of Atlantic TC intensity in 2017 and

2019 against the recon-aided best track for MSW (kt) and MSLP

(hPa) (N 5 450).

Bias MAE RMSE

ADT 2 MSW 24.5 11.2 14.2

SATCON 2 MSW 0.1 7.3 9.4

DeepTCNet 2 MSW 22.3 6.8 8.7

ADT 2 MSLP 2.6 8.0 10.2

SATCON 2 MSLP 20.4 4.8 6.0

DeepTCNet 2 MSLP 1.8 5.4 7.0

TABLE 5. Homogeneous comparison between the subjective

Dvorak andDeepTCNet estimates of Atlantic TC intensity in 2017

and 2019 against the recon-aided best track for MSW (kt). The

subjective Dvorak intensity estimates were obtained from the

ATCF fixes files in which the intensities are indicated as DVTS in

the fifth column (N 5 333).

Bias MAE RMSE

Dvorak 2 MSW 24.9 7.6 9.4

DeepTCNet 2 MSW 21.4 6.3 8.1
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Though the four wind radii estimates could be separately ob-

tained by training four independent networks as we applied for

TC intensity estimation and augmented information could also

be incorporated to enhance the model, we explored another

approach based on multitask learning (MTL). MTL is selected

for its advantages in leveraging useful information contained in

multiple related learning tasks (Zhang and Yang 2017), which

would help alleviate the data sparsity problem in wind radii

estimation. In the rest of this section, the efficacy ofMTL is first

explored, after which the performance of DeepTCNet for wind

radii estimation is then evaluated. Note that rotation data

augmentation is already applied to training all the wind radii

estimation models.

a. Multiple physical-related tasks augment learning

The virtue of jointly learning from multiple tasks was shown

by comparingMTL-based models with four STL-based models

that separately estimate RMW, R64, R50, and R34. As illus-

trated in Fig. 7, the proposed MTL4 that solves four wind radii

tasks (RMW, R64, R50, and R34) simultaneously outperforms

each STL that only models a single wind radius task. Since the

four critical wind radii approximate the integrated wind field of

TCs, the result implies that the DeepTCNet could benefit from

learning physically related tasks. One possible explanation is

that multiple physically related wind radii tasks might impose

the model to learn more useful and generalized features from

data. Therefore, the model can produce more reliable size es-

timations from the IR imagery.

Moreover, we added TC intensity, i.e., MSW and MSLP, as

auxiliary tasks to explore if learning with TC intensity could

enhance the wind radii estimation. As displayed in Fig. 7, the

estimation errors on the test dataset for four wind radii param-

eters all decreased by learning MSW as the auxiliary task (the

MTL5). Besides, it is interesting to observe that using MSW as

the auxiliary task contributes more improvement in the inner-

core wind radii estimations (RMW and R64), whereas using

MSLP as the auxiliary task (not shown) mainly boosted the es-

timations of the outer-core wind radii (R34 and R50). The im-

provement on RMW and R64 by the auxiliary MSW learning

task could because they are both primarily determined by the

inner-core dynamics of TCs (Emanuel and Rotunno 2011;

Weatherford and Gray 1988). Whereas, since the MSLP also

depends on the radial integral of the wind field (Knaff and Zehr

2007; Courtney and Knaff 2009), which could be approximated

from radial momentum equation by assuming cylindrical gra-

dient wind balance in TCs (e.g., Chavas et al. 2017), the model

could have capitalized on the physical relationship between

MSLP and R34 to support learning the outer-core wind radii

(R34). Hence, both MSW and MSLP are included as auxiliary

learning tasks to augment modeling critical wind radii, RMW,

R64, R50, and R34, which is hereafter referred to as MTL6. As

also shown in Fig. 7, the MTL6 model has the overall best per-

formance. Overall, the MTL6 has reduced the wind radii esti-

mation error by 6% than the MTL4 and by 12% over the STL.

This result suggests that theMTL-basedDeepTCNet could take

advantage of the physical relationship(s) between the TC in-

tensity and wind structure described by critical wind radii to

yield improvement. This augmentation is similar to the signifi-

cant improvement in MSW estimation obtained by introducing

the auxiliary physical information of TC structure, i.e., TC full-

ness (Fig. 2a), to the intensity estimationmodel.Moreover, since

the TC intensity (MSW andMSLP) and the wind fields expressed

by critical wind radii (R34, R50, R64, and RMW) together em-

pirically approximate the wind–pressure relationship of TCs

(Knaff and Zehr 2007; Courtney and Knaff 2009; Chavas et al.

2017), the wind–pressure relationship could be the reason that

FIG. 7. Sensitivity of wind radii estimation absolute errors (n mi;

1 n mi ’ 1.85 km) to single-task learning (STL) and multitask

learning (MTL). The MTL4 denotes a model jointly learns four

wind radii tasks: RMW, R64, R50, and R34. The MTL5 jointly

learns five tasks for wind radii and intensity estimation: RMW,

R64, R50, R34, andMSW. TheMTL6model jointly learns six tasks

for wind radii and intensity estimation: RMW, R64, R50, R34,

MSW, and MSLP. The metrics were counted with the test dataset

listed in Table 1.

FIG. 6. Relative uncertainty in the best tracks (blue and green

bars) and the percentage relative estimation errors of the

DeepTCNet (red bars) for MSW, MSLP, R34, R50, R64, and

RMW. The statistics of best track uncertainty (if available) were

taken from Landsea and Franklin (2013) as references. The

verification of DeepTCNet was based on 2017 and 2019 cases in

the Atlantic basin with 63-h aircraft reconnaissance fixes.
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MTL6 performs best among the size estimationmodels. Note that

although theMTL6 also estimates TC intensity, in this study it can

only apply to the storms which have intensities larger than 34kt.

b. Performance evaluation

Given the impressive performance of the MTL6, it is selected

as the final wind radii estimation model named DeepTCNet-R.

Scatterplots of the wind radii estimates produced by the

DeepTCNet-R against the recon-aided best track ‘‘ground

truth’’ are also shown in Fig. 4. The overall performance of the

DeepTCNet-R is quite impressive. Especially, the R34 estima-

tions given by the DeepTCNet-R compare well to the best track

data (R 5 0.87). However, it is worth noting that the scatter of

the size estimation points shown in Fig. 4 is much larger than the

intensity estimations. The smaller sample size training dataset

used to train theDeepTCNet-R and themore considerable wind

radii data uncertainty could be the causes.

As shown in Table 6, the DeepTCNet-R outperforms the co-

incident operational wind radii estimates from the Multiplatform

Tropical Cyclone Surface Wind Analysis technique (MTCSWA;

Knaff et al. 2011) with an average improvement of 32% (32%,

25%, 28%, and 38% for RMW,R64, R50, andR34, respectively).

These differences also passed the Kolmogorov-Smirnov test

with a 99% confidence level. Given theDeepTCNet-R only relies

on IR imagery to estimate wind radii while the MTSCWA is

based on multiple satellite channels, including more satellite

channels into DeepTCNet-R is likely to further increase wind

radii estimations’ accuracy. This is very important because there

still is large uncertainty in the satellite-based wind radii estima-

tions (Knaff and Sampson 2015). As shown in Fig. 6, the relative

wind radii estimation errors provided by the DeepTCNet-R is

much lower than relative uncertainty of the satellite-only-based

wind radii observations. The DeepTCNet-R gives the most ac-

curate estimation for R34, then are R50 and R64. However, the

DeepTCNet-derived RMW estimates have the highest relative

errors among the wind radii estimates, suggesting that endeavors

are still required to estimate this most difficult-to-measure TC

inner-core feature. To the authors’ knowledge, DeepTCNet is the

first deep learning application for the real-time estimation of TC

wind radii. Moreover, the unique point of DeepTCNet is that it

can produce multiple wind radii simultaneously. Although this

paper only discussed the symmetric wind radii estimation, the

DeepTCNet can also be applied to estimate the TC wind field’s

asymmetries when asymmetric features (such as storm mo-

tion and vertical wind shear) are included as the auxiliary

information of the model. A subjective comparison suggests

that the DeepTCNet also outperforms or in line with the

previous techniques (Table 7) though a homogeneous com-

parison is needed in the future.

5. Discussion

a. Interpretation and visualization of DeepTCNet

The backbone algorithm of DeepTCNet is the deep con-

volutional neural networks (CNNs), which are often treated as

black boxes. That is, CNNs pick and decide features that they

think essential from input data, thus usually left little ideas to

the humans. However, the interpretation of CNNs is useful for

establishing trust and confidence in users and suggesting the

models’ signs of disabilities. To provide the readers some in-

formation about how the DeepTCNet makes the decision, we

implemented saliency maps (Smilkov et al. 2017) and Layer-

wise relevance propagation (LRP; Montavon et al. 2017, 2018)

to attribute what features of an input are responsible for the

model’s output. The saliency maps method uses the gradient of

one output with respect to individual pixels of the IR image to

reflect their influence on the final intensity or size estimation.

The saliency value can be either positive or negative. And in

this study, the SmoothGrad (Smilkov et al. 2017) was used to

help visually sharpen the gradient-based saliency maps. One

disadvantage of the saliency method is that it only looks at

local gradients in the input space, which could be limiting

(Montavon et al. 2017). The LRP explains the decision of a

model by propagating the prediction from the output to the

input using local redistribution rules. Since LRP does not rely

on gradients, it does not suffer from problems such as gradi-

ent shattering and explanation discontinuities (Montavon

et al. 2018), which also appear when plotting the saliency

maps for DeepTCNet. One should note that LRP was de-

signed for classification networks by backpropagating the

activation scores of the target class to the input space. In the

extensible regression setting (for the DeepTCNet), a larger

LRP value represents that one feature has higher relevance to

increasing the model’s output intensity or size.

Consider the example in Fig. 8, the saliency (SmoothGrad)

and the LRP reveal that the model (DeepTCNet-R in this

case) has learned different features for estimating diverse TC

parameters. The saliency results show that the increase of

bright temperature in the eye of Irma (2017) can cause the

model to produce a higher intensity (MSW). The decrease of

temperature around the storm’s eye, which means the deeper

convections in the eyewall region, can also increase the value of

intensity (MSW) estimation. The saliency map for the MSLP

tells the same story, i.e., the MSLP drops (i.e., intensity raises)

with a warmer eye and colder eyewall. The saliency features in

the outer region seem fuzzy and not physically meaningful. In

addition, the estimated RMW of DeepTCNet-R (denoted by

the blue ring in Fig. A1c) locates near the center region where

saliency values transfer from negative to positive, meaning that

the model might have learned that the concentration and ex-

pansion of the eye/eyewall directly determine the TC’s RMW.

TABLE 6. Homogeneous comparison between the MTCSWA

and DeepTCNet estimates of Atlantic TC wind radii in 2017 and

2019 against the recon-aided best track for RMW, R64, R50 and

R34 (n mi; 1 n mi ’ 1.85 km).

Parameter Technique Bias MAE RMSE

RMW (N 5 381) MTCSWA 4.6 11.7 18.2

DeepTCNet 21.3 7.3 11.0

R64 (N 5 216) MTCSWA 4.5 10.2 13.1

DeepTCNet 20.8 7.3 10.0

R50 (N 5 313) MTCSWA 20.8 15.8 20.7

DeepTCNet 23.1 11.8 15.5

R34 (N 5 382) MTCSWA 27.4 26.4 33.0

DeepTCNet 2.7 17.2 21.8
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The estimatedR34 is located at a ring region where the bubble-

like saliency features change into roll-like patterns. It is also

interesting to observe from the saliency maps near the center

that the model assigns more importance to axisymmetric cloud

features for estimating the inner-core parameters (MSW,

MSLP, RMW, and R64), while the important features for

outer-core wind radii (R50 and R34) are asymmetric. As the

supplement, the LRP reveals that the intensity is largely

determined by the IR properties near the center (e.g., eye and

the coldest clouds), wind radii of R34 is dependent on diverse

clouds, convections and rainbands features in the inner- to

outer-core regions, while the MSLP is determined by a com-

bination of that information. Moreover, we further compare

the LRP patterns of R34 for the smallest (25% quantile) and

the largest (75% quantile) TCs in the testing dataset. As shown

in Fig. 9, there is an obvious difference in theR34’s LRP results

for the large and small TCs, that is the larger TCs have wider

spread LRP relevance values. This result gives us more confi-

dence that the DeepTCNet might have learned physically

important features from the IR images. The interpretation

maps of the DeepTCNet-I, which uses the small inner-core-

region image for estimating intensity, are also shown (inserted

graphs in Figs. 8a,b,g,h), and showing similar descriptions with

the interpretation maps of the DeepTCNet-R. These results

suggest that the CNNs applied with proper interpretation

methods could be useful for exploring more complex TC

mechanisms, while future studies and more advanced and

suitable interpretation techniques are warranted.

b. Broader applications and limitations of DeepTCNet

Section 3a shows that including auxiliary information, es-

pecially the TC fullness, can help the model improve esti-

mating TC intensity from IR imagery, the TC fullness hence

was used to develop a final intensity estimation model

(DeepTCNet-I). Here we further discuss how the auxiliary

information of TC fullness could influence the accuracy of TC

TABLE 7. Mean absolute errors (unit: n mi; 1 n mi’ 1.85 km) of

wind radii estimates derived by DeepTCNet and other methods, as

well as the satellite technique used for eachmethod. Themetrics of

DeepTCNet are counted with Atlantic TC wind radii in 2017 and

2019 against the recon-aided best track for R34, R50, R64, and

RMW. Note that the statistics for the existing size estimation

models are taken from the original papers and their evaluation

samples are inconsistent.

Method

Satellite

technique RMW R64 R50 R34

Demuth et al. (2006) AMSU — 6.8 13.3 16.9

Kossin et al. (2007) IR 11.4 14.5 19.8 24.2

Knaff et al. (2011) IR, Scatterometer,

AMSU

— 13.0 17.8 36.5

Knaff et al. (2016) IR — 12.0 20.0 37.0

Dolling et al. (2016) IR — 7.3 12.5 20.8

DeepTCNet IR 7.6 9.2 12.5 17.0

FIG. 8. The (top left) input imagery and (a)–(l) interpretation heatmaps of DeepTCNet for estimating intensity and wind radii. The heat

maps were obtained by (a)–(f) SmoothGrad (Smilkov et al. 2017) and (g)–(l) LRP (Montavon et al. 2018) forHurricane Irma at 0900UTC

5 Sep 2017 with an intensity of 142 kt. The inserted boxes denote the small IR image and the corresponding heat maps [(a),(b),(g),(h)] for

the DeepTCNet-I, while the larger ones are for the DeepTCNet-R. The black rings and blue rings in (c)–(f) and (i)–(l) represent the best

track wind radii and the DeepTCNet-estimated wind radii, respectively. The relative error for each estimated parameter was ,1%

compared with the best track observation. The LRP and saliency maps are calculated using the iNNvestigate package (Alber et al. 2019),

and LRP is applied with the a 5 1 and b 5 0.
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intensity estimates in an operational setting when the real-

time TC Vitals data are unavailable. As displayed in Table 8,

the intensity errors increase when the TC fullness from the

real-time MTCSWA database is used. This is expected since

the model was trained with the TC Vitals-based TC fullness

but used the MTCSWA-based TC fullness for application.

From a more convenient application perspective of the

DeepTCNet method, it is also a nice choice to use TC fullness

derived fromMTL4 andMTL6 as the auxiliary augmentation

information. In this case, the DeepTCNet could rely on fre-

quently available IR observations to produce TC intensity

estimates of high temporal resolution. Table 8 shows that

using the MTL6-based TC fullness as auxiliary information

can produce better intensity estimation than the MTL4- and

MTCSWA-based TC fullness, yet the differences are small

and not statistically significant. As a comparison, we also used

the best tracked TC fullness obtained from the IBTrACS to

make TC intensity estimation. As expected, the intensity

estimation errors further decreased to 6.7 kt when the more

accurate TC fullness was used in place (Table 8). These

error metrics obtained with best tracked TC fullness could be

regarded as a potential performance of DeepTCNet-I when

more accurate physical auxiliary information of TC fullness

was available in real time. Besides, themodel augmented with

the real-time-available TC fullness data still yields better

performance over without using this auxiliary information

(Table 8).

While the DeepTCNet was developed and evaluated with

the TC cases in the Atlantic basin, where reconnaissance air-

craft data are available, the methods discussed could extend to

other ocean basins. Our preliminary testing results show that

DeepTCNet developed with the Atlantic data can be applied

to the western North Pacific basin with reliable intensity and

size estimation performances and retraining themodel with the

Northern Hemisphere data can result in better results. The

ability of DeepTCNet to generalize to other basins is essential

in that these regions rely extensively on satellites for moni-

toring and forecasting the TCs. In another important way,

DeepTCNet can contribute to TC intensity and size analysis

in poststorm assessments and the best track procedures.

This could be particularly important for the TC size analysis

because most operational agencies just started to produce

FIG. 9. Composite average IR bright temperature and LRP heat maps for DeepTCNet-R to estimate the R34 for

the (left) small TCs and (right) large TCs. The 25% quantile samples of the R34 in the recon-aided testing dataset

were used to compose small TCs (N5 110, m5 54 n mi), while the 75% quantile samples composed the large TCs

(N 5 112, m 5 165 n mi). The black rings and blue rings in LRP represent the averaged best track R34 and the

averaged DeepTCNet-estimated R34, respectively.
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quality-controlled estimates of wind radii since 2004 (e.g.,

National Hurricane Center) or even more recent since 2016

at Joint Typhoon Warning Center (Sampson et al. 2018).

Moreover, there are no quality-controlled estimates of RMW

provided by these operational agencies (Sampson et al. 2018).

All of these are primarily caused by the challenges faced with

observing surface wind fields from space, and no reliable method

like the Dvorak is widely applied for size estimation. Given the

best track data are widely used to build or validate TC analysis

algorithms and forecasting,more efforts to produce higher-quality

best tracks of intensity and wind radii are still of vital concern.

Although the evaluation results show that DeepTCNet

has outstanding performance for estimating both intensity and

wind radii of TCs, there are some limitations of the DeepTCNet.

The first is that the model built up for intensity estimation

underperforms for very intense TCs. The high percentage of

unresolved tiny eyes in the IR imagery for strong intensities as

well as the relatively low number of these cases for the model to

learn from could be the causes. Whereas, this underestimation

bias at intense TCs could reveal an observational bias in the best

track. That is, we are observing more intense hurricanes than

before. Furthermore, since the DeepTCNet is trained on histor-

ical data of TCs before 2016, it would lack the ability to produce

large intensity estimates as recently observed. The utility of

microwave-based satellite observations andmore accurate recon-

aided data could boost the estimation of TC intensity and size.

6. Summary

DeepTCNet is a deep convolutional neural network as a

backend method designed to capitalize on physical knowledge

of TCs to produce accurate intensity (MSW and MSLP) and

wind radii estimates (R34, R50, R64, and RMW) of TCs from

IR imagery. Introducing auxiliary physical information is an

effective approach to improve the model for intensity estima-

tion. It is demonstrated that incorporating TC fullness, which

describes the critical structure of TCs, to the model can sig-

nificantly enhance its performance for intensity estimation.

Multitask learning, which has the advantage of sharing differ-

ent and more general features among tasks was applied to

improve the model for wind radii estimation. Our results show

that learning multiple wind radii tasks simultaneously can yield

more accurate wind radii estimation than separately learn a

single wind radii task. Moreover, we also found that the model

trained to estimate two intensity measures (MSW and MSLP)

and four critical wind field measures (R34, R50, R64, and

RMW) simultaneously yields the best wind radii estimates.

The inherent wind–pressure relationship approximated by

these tasks could be a cause. Besides, results show that in-

cluding continuous IR images from near-previous times

benefited the model for intensity estimation.

The evaluation results based on homogeneous testing samples

showed that the DeepTCNet is in-line with SATCON, but sys-

tematically outperforms theADTby39% improvement forMSW

and 33% improvement for MSLP estimation. The DeepTCNet

also exceeds the Dvorak method for TC intensity estimation.

Besides, DeepTCNet also surpasses MTCSWA in estimating

critical wind radii of TCs, by 32%, 25%, 28%, and 38% forRMW,

R64, R50, and R34, respectively. These results demonstrate that

DeepTCNet can fundamentally improve the mining of IR imag-

ery for TC intensity and wind radii estimation. Therefore, there is

reason to believe the DeepTCNet method can be applied to en-

hancing the utilization of other observations of TCs.

More training samples with high-quality to build up deep

learning models, such as aircraft observations, are particularly

crucial for intensity and size estimates. However, the dilemma

of data limitation for deep learning methods would be tough in

the short term, especially in the research area of extreme

weather systems like TCs. Therefore, exploring and developing

appropriate approaches to incorporating physical knowledge

of TCs into deep learning algorithms is the essential further

direction. Besides, introducing the microwave sensor–based

observations into the DeepTCNet could be crucial for pro-

ducing more accurate estimates.
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