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ABSTRACT: Observed climate records of length, homogeneity, and reliability are the basis of climatological studies on
tropical cyclones (TCs). However, such data are scarce for TC size in terms of wind field, particularly over the western
North Pacific (WNP). This study demonstrates that deep learning can practically bridge this data gap when applied to satel-
lite data. Using transfer learning, deep learning algorithms were developed to estimate reliable TC sizes from infrared
imagery for the WNP TCs. The algorithms were then applied to a homogeneous satellite database to reconstruct a new his-
torical dataset of TC sizes, named DeepTCSize, which covers 37 years (1981-2017) over the WNP. DeepTCSize includes
multiple TC size quantities, such as wind radii of 17, 26, and 33 m s”! and maximum winds (ie., R17, R26, R33, and
RMW), which have high correlations (R = 0.85, 0.84, 0.79, and 0.76, respectively) with postseason quality-controlled best
track data. Comparisons with ocean wind observations were made and this further revealed that DeepTCSize has good
quality and is free from spurious error trends, providing an advantage over the historical “best estimates” of TC sizes cur-
rently available in the best track archives for the WNP. The new reconstructed TC sizes dataset for the WNP TCs shows
significant expanding trends in the annual-mean outer circulations (at a rate of 2% decade™ ! for R17 and a rate of
2% decade ™! for R26), which are mainly associated with weaker storms, as well as a weak contracting trend in the annual-
mean inner-core size (RMW).

SIGNIFICANCE STATEMENT: Tropical cyclone (TC) size largely controls the TC-induced hazard and risk. If the
size of TC can be determined more efficiently in observations spanning a long-enough period, the climatology and
changes in TC can be better modeled and understood. This study applies deep learning methods to reconstruct a new
dataset of multiple inner- to outer-core TC size metrics from infrared imagery of satellites for the western North Pacific
TCs. The dataset spans 37 years. It is homogenous and has comparable accuracy with the existing “best estimates.”
Using the dataset, a significant expanding trend was identified in the outer-core size, while the inner-core size exhibits a
weak contracting trend. The dataset can be employed in several applications.
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1. Introduction of inner-core regions and outer circulations in a leading order
(e.g., Frank 1977, Weatherford and Gray 1988). Most studies

The question of whether climate change influences tropical ; .
4 & p define the TC size as the areal extension of a TC’s outer

cyclone (TC) activity has attracted much attention due to its
significant potential societal impacts. TC intensity, especially
the proportion of the strongest TCs, has been observed via
its trends (Holland and Bruyere 2014; Kossin et al. 2013,
2020). These observations show that the average latitude of
the lifetime-maximum intensity of TCs has migrated poleward
globally since the 1980s (Kossin et al. 2014). These changes
can add to TC hazard exposure and mortality risk (Kossin
et al. 2016). Even though TC sizes, defined as the radii of
winds, often determine the TC destructive potential (Powell . e : )
and Reinhold 2007) and storm surge risk (Irish et al. 2008), also aid in the prediction and comprehension of emerging
few studies have examined their changes, and no observed an- changes in TC activity. For example, the potential intensity
thropogenic influences on TC size have been reported to date ~ theory (Emanuel 1986, 2000), which formulates an upper
(Knutson et al. 2020). bound of a TC’s peak wind, suggests an increasing TC inten-

Multiple definitions have been attributed to the term “TC sity with global warming (e.g., Sobel et al. 2016). The TC size,
size.” According to various physical conditions, the complete ~ On the other hand, only has a limited physical basis. Chavas

radial structure of a TC is frequently thought to be composed ~ ©t al. (2015) developed a physics-based model for the radial
structure of the TC tangential winds. Although the model is use-

ful, it cannot be determined solely by environmental parameters,
and its time-dependent wind-field variability is prompted by in-
Corresponding author: Zhe-Min Tan, zmtan@nju.edu.cn ternal TC parameters such as the TC intensity. There could also

circulations. However, the radius of maximum wind (RMW)
located in the turbulent inner-core region is another critical
size metric that is widely adopted (e.g., Irish and Resio 2010).
Due to its destructive potential, forecasters operationally pay
special attention to the radial extent of 17, 26, and 33 m s71
surface winds (R17, R26, and R33), as well as the RMW. Sev-
eral studies also refer to TC size in terms of the rainfall area
of TCs (Lin et al. 2015; Guzman and Jiang 2021).

Theoretical models that adequately explain TC in nature
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be a theoretical upper bound on TC size, but the existing
theories (e.g., Khairoutdinov and Emanuel 2013; Chavas
and Emanuel 2014; Lu and Chavas 2022) have not yet of-
fered a comprehensive explanation for observational results
(Chavas et al. 2016).

Regarding the theoretical limitations, it is important to in-
vestigate the physics of TC sizes based on observations. In
previous studies, TC size climatology has been developed
mostly based on QuikSCAT ocean winds (e.g., Chavas and
Emanuel 2010; Lee et al. 2010; Chan and Chan 2012, 2015). In
recent times, Chavas et al. (2016) comprehensively revisited
TC size climatology using an updated version of the QuikSCAT
database. However, the length of QuikSCAT records (1999-
2009) was short and scarce [with less than 100 samples per year
over each ocean basin, according to Chan and Chan (2015)] to
support investigations of variations of TC sizes on the decadal
time scale. To circumvent this issue, Knaff et al. (2014) created
an infrared (IR)-based TC size climate record over 1978-2011,
using 5-kt wind radii (RS; 1 kt ~ 0.51 m s~ ') as the size metric.
With the 34-yr database, interbasin trends were found (includ-
ing a decrease in the eastern North Pacific and an increase in
the western North Pacific), but none of these trends were statis-
tically significant. The R5-based TC size climatology, on the
other hand, differs considerably from the observed one. This is
likely due to RS being an indirect quantity derived empirically
from the tangential wind at 500 km (V500), which is diagnosed
from numerical models; and it only explains 30% variance of
the observed R17 (Knaff et al. 2014). Another issue with the
IR-based RS dataset could be the use of a simple regression
model with limitations. Several other studies used reanalysis
datasets to generate a large number of long-term TC size re-
cords (e.g., Chan and Chan 2018; Schenkel et al. 2018). How-
ever, the TC wind profiles, including the TC intensities, were
still found to significantly differ from those recorded in best
track data (Schenkel and Hart 2012); hence, the findings based
on reanalysis data need to be interpreted meticulously. Addi-
tionally, the inner-core sizes, such as RMW, were also poorly
resolved in the reanalysis data (Schenkel et al. 2017; Bian et al.
2021). As such, improving observed records of TC sizes to sup-
plement our understanding of TC size climatology becomes
imperative.

Observational capabilities are one of the root causes for the
lack of datasets for TC size that are compliant with the length
and homogeneity standards of climate data. When aircraft
data are not available (in most tropical regions outside the
North Atlantic and the Caribbean Sea), satellite data have
been the major source of TC information. The Dvorak tech-
nique has been the primary satellite method for estimating
TC intensity for more than four decades, based on cloud pat-
tern recognition from visible (VIS) and IR satellite images
(Velden et al. 2006). However, there is no such technique for
estimating equally reliable TC sizes from satellite imagery.
Although several algorithms were developed to derive TC
sizes from IR imagery (e.g., Mueller et al. 2006; Kossin et al.
2007; Knaff et al. 2014, 2016), the estimations tend to have
large uncertainties (Landsea and Franklin 2013; Knaff et al.
2021). So, the operational estimation of TC sizes has primarily
relied on scatterometers (Brennan et al. 2009). For example,
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the much-cited NASA’s Ku-band scatterometer QuikSCAT
(Lungu and Callahan 2006) provided reliable ocean surface
wind data for TC outer sizes around 1999-2009. Throughout
the 2010s and into the early 2020s, developments in scatter-
ometry (e.g., ASCAT; Figa-Saldafia et al. 2002), L-band
radiometers (Reul et al. 2017), and synthetic aperture radar
(Horstmann et al. 2015) have continued to complement TC
size estimations (Knaff et al. 2021). More recent advances in
wind retrieval algorithms have also enabled all-weather
TC wind speeds such as those produced from multichannel
radiometers WindSat, AMSR-E, and AMSR2 (Meissner et al.
2021). However, many of these satellite sensors still have diffi-
culty in providing accurate observations of RMW for TCs,
due to their limited resolutions and deteriorating capability
to handle more complex TC inner-core conditions. When
aircraft observations are unavailable, the SAR may be the
most reliable source of RMW data (e.g., Mouche et al. 2017,
Combot et al. 2020). A recent extensive review of TC size ob-
servations is presented by Knaff et al. (2021). The review sug-
gested that the quality of the observed TC size records was
found to be dependent on the method used and to vary over
time and space. Therefore, it is difficult to conduct a direct re-
analysis of these records to create a climate-quality dataset.

Global TC forecasting centers have collected most of the
historical data of TC sizes over time, constituting what is
known as the “best track” (e.g., Knapp et al. 2010; Landsea
and Franklin 2013). Partly due to the difficulty in reanalyzing
the TC sizes data from diverse sources, only small parts of the
TC sizes data in the best tracks to date have undergone rigor-
ous postseason reanalysis (Sampson et al. 2017; Knaff et al.
2021). In the western North Pacific (WNP), both the Joint Ty-
phoon Warning Center (JTWC) and the WMO Regional Spe-
cialized Meteorological Centre in Tokyo (referred to as JMA
in the remainder of this paper) maintain the best track record
of TC sizes. However, significant interagency data discrepan-
cies have been identified (Song and Klotzbach 2016; Kim et al.
2022), indicating that the best track TC sizes are also flawed.
In addition to this, how the uncertainty in the best track data-
sets may result in large, distorted variations and false trends
in TC sizes, also remains uninvestigated.

Given the above context, a typical research question will
be, is it possible to reproduce TC sizes that meet the quality
required for climate research? To achieve this, novel para-
digms such as deep learning could offer a promising approach.
The rapid advances in deep learning have substantially im-
pacted many scientific fields, including climate science. Deep
learning can be used to reconstruct missing climate informa-
tion (e.g., Kadow et al. 2020), recognize driving climate pat-
terns or extreme events (e.g., Racah et al. 2017; Barnes et al.
2020), climate attribution (e.g., Callaghan et al. 2021) and
seasonal-to-decadal climate predictions (e.g., Ham et al.
2019). Recently, major progress has also been made in apply-
ing deep learning for TC-related studies. Several studies have
demonstrated that deep learning outperforms the Dvorak
techniques for estimating TC intensity from satellite imagery
(e.g., Chen et al. 2019; Wimmers et al. 2019; Zhuo and
Tan 2021). In particular, Zhuo and Tan (2021) introduced a
physics-augmented deep-learning method named DeepTCNet
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to estimate TC intensity and size from IR imagery. Deep-
TCNet’s IR-based TC sizes were found to compare well with
recon-aided best track data for the North Atlantic TCs. To the
best of our knowledge, DeepTCNet is the first model to use
deep learning to estimate TC sizes. One of the main goals of
this study is to establish an observed TC size dataset for WNP
TCs from satellite data using DeepTCNet. The new dataset is
then utilized to investigate the climatology and trends of TCs
over WNP. The basic idea of this study aligns with the effort
to develop consistent reanalysis of TC intensity from satellite
data using objective algorithms (e.g., Kossin et al. 2007, 2013);
however, in this paper we will concentrate on TC size metrics.
Specifically, we focus on the WNP basin because it is the most
active ocean basin in terms of TC activity, but there is an ap-
parent lack of a reliable climate dataset of TC wind structure
in this region. In addition, to better represent the TC wind
field, the R17, R26, R33, and RMW spanning the outer- to the
inner-core region of a TC will be considered.

In section 2, transfer learning is applied to DeepTCNet to
adapt it for the WNP TCs. The model is then applied to recon-
struct a long-term dataset of TC sizes, named DeepTCSize.
Section 3 outlines the data used in this study. Section 4 provides
an overview and a relatively detailed evaluation of the new
dataset. Section 5 presents the applications of DeepTCSize to
address the data issue of historical WNP TC size records and
for the trend analysis of TC sizes, but no rigorous scientific
attempt is made to attribute the observed changes to a specific
cause. The concluding remarks are provided in section 6.

2. Deep-learning methods for the TC size estimation

a. DeepTCNet and its adaption for the WNP via
transfer learning

DeepTCNet, developed by Zhuo and Tan (2021), is a deep
learning-based method that learns to formalize the relation-
ships between the IR imagery (input), TC intensity, and size
(output) by iteratively adjusting its parameters until it can
optimally predict the training cases. The backbone of Deep-
TCNet consists of two-dimensional (2D) convolutional neural
networks (CNNs; LeCun et al. 2015). A 2D CNN is a special-
ized type of artificial neural network designed to process
spatial hierarchies of features in data. As a result, it is appro-
priate for exploiting relevant information of TCs from IR im-
agery. Deep learning algorithms generally require a large
amount of training data to perform well, but the amount of
TC data is frequently comparatively small due to the rarity of
TCs and the difficulties in observing them. As such, physical
knowledge of TCs has been introduced to augment DeepTCNet
through data that embody underlying physics. For the TC size
estimation, DeepTCNet was trained in a multitask learning
framework to simultaneously estimate four wind radii metrics
(ie., R17, R26, R33, and RMW) and two intensity quantities
(Vmax and Pc) serving as auxiliary outputs. When a deep learn-
ing model is trained on such data, it can learn functions that re-
flect the physical structure of the data (Karniadakis et al. 2021).
In this case, it is the complex physical relationship between the
wind structure of TCs and the IR features, possibly including the
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cloud shield and distributions of convection. Taking advantage
of the new technological capability of DeepTCNet, IR-based
TC size estimations were found to compare well to the best
track data for North Atlantic TCs with Pearson correlation
coefficients as around 0.8 (Zhuo and Tan 2021). These size esti-
mations were also found to be of better quality than those pro-
duced by multiple observation platforms (MTCSWA; Knaff
et al. 2011). However, the previous version of DeepTCNet only
applied to the North Atlantic TCs, considering this region best
observes and documents the intensity and size data of TCs by
the National Hurricane Center (NHC). Even though the general
physical relationship between IR and TC size can hold between
different basins, both IR and TC sizes themselves could have sig-
nificant interbasin variations (e.g., Knaff et al. 2014; Chan and
Chan 2015; Chavas et al. 2016). Therefore, the updating of the
weights of DeepTCNet for the WNP TCs is required. As a re-
sult, this paper first develops reliable satellite observation-based
size estimation algorithms for WNP TCs (Fig. 1a). The algo-
rithms are then applied to reconstruct a new long-term TC sizes
dataset dating back to the early 1980s (Fig. 1b; section 2b).

First, for the establishment of a model for estimating size
metrics for the WNP TCs, transfer learning is carried out to
adapt the network weights of DeepTCNet (Fig. 1a). Transfer
learning (e.g., Pan and Yang 2010) is a machine learning
method where a model developed for a task is reused as the
starting point for another model on another task. Transfer
learning has unique advantages in handling small-data scenar-
ios; therefore, it is a good choice for training DeepTCNet
with little reliable best-tracked TC size data available over the
WNP. In addition, the feasibility of our methods is based on
the fact that the fundamental physical relationship between
the IR and TC sizes is transferable between the North Atlan-
tic and the WNP basins. Specifically, the WNP version of
DeepTCNet was trained using transfer learning as follows
(Fig. 1la):

1) Pretrain DeepTCNet with NHC data for Atlantic TCs
during 2005-20. The 2005-18 (N = 6597) data are used
for training models and 2019-20 (N = 1290) validation
samples for the early stop.

Fine-tune DeepTCNet parameters with JTWC data for
WNP TCs during 2018-20. The 2019-20 data (N = 1067)
for training and 2018 (N = 1057) validation samples for
the early stop.

2)

b. DeepTCNet refinement

For the best possible reconstruction of the final historical
dataset of TC size metrics, named DeepTCSize (Fig. 1b),
here, a two-step procedure is applied to refine DeepTCNet
besides using transfer learning for the WNP adaption as
shown in the last subsection. In the first step, only one IR im-
agery is taken as model input to produce the corresponding TC
sizes, i.e., input = [IR]. At this step, we found that the IR-based
size estimations at the time of TC lifetime-maximum intensity
(LMI) were more accurate (e.g., R = 0.88; MAE = 36 km for
R17; R = 0.77, MAE = 13 km for RMW) than all cases (e.g.,
R = 0.83, MAE = 43 km for R17; R = 0.73, MAE = 14 km for
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Atlantic TCs
(2005-2020 )

(a) Adapt DeepTCNet for the WNP TCs by transfer learning

Transfer
DeepTCNet DeepTCNet

WNP TCs
(2018-2020)

Input

WNP TCs
(1981-2017 )

(b) Reconstruct the historical WNP TC size records

DeepTCNet

DeepTCSize

)

Output

WNP TCs
(1981-2017)

FIG. 1. The framework of the reconstruction of historical TC size records: (a) develop a reli-
able deep learning model (DeepTCNet) for the estimation of TC sizes/wind radii from IR imag-
ery over the WNP basin and then (b) apply the WNP version of DeepTCNet to reanalyze a
long-term satellite imagery record to generate a new dataset (DeepTCSize) of wind radii for

WNP TCs over a 37-yr (1981-2017) period.

RMW), based on the 2016-17 test data of WNP TCs; R means
the Pearson correlation; MAE means the mean absolute error.
Better statistics also hold for R26 and R33 of the LMI cases
than all cases. This could be due to the clouds being more sym-
metric and organized at the LMI stage of a TC, therefore pro-
viding higher “predictability” of TC sizes.

Although the accuracy of these TC sizes estimations produced
solely from IR imagery by DeepTCNet has been promising in
the first step, a second step is employed for further improve-
ments by introducing some TC information besides the IR imag-
ery as the input of DeepTCNet. As the intrastorm variabilities
in TC sizes are observed to be smaller than the interstorm differ-
ences (e.g., Lee et al. 2010; Schenkel et al. 2018), providing the
DeepTCNet some “size bound” besides the IR imagery could
help constrain the size estimations to first order. Considering
that the DeepTCNet’s estimations of the TC sizes are more ac-
curate at the time of LMI found in the first-step results, these
data may be used to provide some “size bound.” Specifically, we
have used the R17 and RMW at the time of LMI (denoted as
R17_LMI and RMW_LMI) as auxiliary TC information to aug-
ment the estimation of TC sizes from satellite data in the second
step; i.e., the input is [IR, R17_LMI, RMW_LMI, DT2LMI],
where DT2LMI is a time parameter normalized by the time of

LMI. Overall, the second step yields an improvement over
the TC sizes estimations obtained in the first step with higher
correlation and lower estimation errors (e.g., R 0.85,
MAE = 39 km for R17; R = 0.76, MAE = 14 km for RMW
for all the 2016-17 WNP TC cases).

The rationale behind the two-step procedure is based on
the fact that introducing TC information besides the IR imag-
ery can improve the performance of DeepTCNet (Zhuo and
Tan 2021) and there is also a demand for a more homoge-
neous reconstruction of data to aid in the detection of trends
in activity (Emanuel et al. 2018). In terms of the homogeneity
demand, one can regard the two-step procedure as an interac-
tive reanalysis of IR imagery because the IR imagery was first
analyzed to obtain the R17_LMI and RMW_LMI in the first
step, then the R17_LMI and RMW_LMI were combined with
IR imagery again to produce the final TC size estimations in
the second step. As such, the final reconstructed database
DeepTCSize is strictly based on one source of satellite imagery
data. Although the TC location, which is one important TC size-
related factor, can also be used to augment the DeepTCNet for
better TC size estimations, TC location has not been employed
as the algorithm input because it requires using other data sour-
ces such as the best track database.
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In this study, the network and training configurations of
DeepTCNet remain unchanged as in Zhuo and Tan (2021),
except that we 1) refined the input of DeepTCNet intending
to achieve the optimal reconstruction of homogeneous TC
sizes records, 2) enlarged the input image size to be larger
(256 X 256 grids) by considering that WNP TCs tend to have
wider cloud circulations, and 3) used learning rate as 1 X 10™*
to have a slight improvement in the overall performance of
DeepTCNet. Also note that in both the first and the second
steps, pretraining DeepTCNet with North Atlantic TC data
and transfer learning with WNP TC data, as introduced in
Second 2a (Fig. 1a), are required. Particularly, in the second
step, for the model pretraining, the input R17 and RMW at
the time of LMI are directly from the NHC best track to en-
sure the DeepTCNet learns a correct model starting point;
while for the transfer learning to adapt for the WNP TCs and
finally the establishment of DeepTCSize, the auxiliary TC in-
formation of R17_LMI and RMW_LMI are obtained from
the DeepTCNet using IR as the only input in the first step.

As shown in Fig. 1b, the TC size estimation algorithm—
DeepTCNet of WNP version refined with the two-step
procedure—is applied to a spatiotemporally homogenized re-
cord of satellite data (section 3a) to form the record of TC size
estimations, named DeepTCSize. DeepTCSize includes four
TC size metrics R17, R26, R33, and RMW, provided at every
3 h. Fuller descriptions of DeepTCSize data, including which
TC cases they correspond to, are listed in section 4a.

3. Data

In this study, three kinds of data were adopted to develop
the algorithms and evaluate the resulting TC size estimations.
The first kind of data is the IR imagery from a spatiotemporal
homogenized record used as the data source of the TC size
estimations. The second kind of data is the best track database
used as training data able to fit the DeepTCNet algorithms
and as a reference for accessing the TC size estimations. The
third kind of data is the remotely sensed TC ocean winds data,
also used as a reference for the evaluation of the TC size
estimations.

a. IR satellite records

To create a homogeneous record of TC size metrics, the IR
imagery from the Gridded Satellite (GridSat-B1) dataset ver-
sion v02r01 (Knapp et al. 2011) is used. It is good to note that
the IR channel (nearly 11 wm) of GridSat-B1 meets the cli-
mate data record standards in terms of length, consistency,
and continuity. This is because these data have been reproc-
essed and recalibrated, and the later data have been sub-
sampled spatially and temporally to be homogeneous, with
the earlier data (0.07° latitude spatial and 3-h temporal resolu-
tion) (Kossin et al. 2013). Therefore, we have attempted to re-
construct a homogeneous record of WNP TC sizes based on
the deep-learning reanalysis of GridSat. Since there is a lack
of available geostationary satellite data in the Eastern Hemi-
sphere in 1980 (Knapp et al. 2010), our period of analysis
starts in 1981 when the satellite data are consistently avail-
able. We have cropped the global-scale GridSat-B1 to be a
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TC-centered data of 256 X 256 grids using the best track
storm center positions provided by NHC and JTWC. One can
also directly use the GridSat data via HURSAT which has
been cropped to be TC-centered data (Knapp and Kossin
2007), but HURSAT so far has only been updated through
2015 for the public access. For data preprocessing, IR images
with more than 30% invalid values (brightnessncl tempera-
ture < 140 K or >375 K) were removed. Sample-specific nor-
malization was then applied to each IR image by deducting
the average and dividing by the standard deviation.

b. Best track data

The best track data used in this study are taken from the
International Best Track Archive for Climate Stewardship
(IBTrACS) version 4.0 database (Knapp et al. 2010), which
are mainly used to 1) provide TC center locations to crop the
IR imagery, 2) feed labels of training data for DeepTCNet al-
gorithms, and 3) provide a reference for the assessment of
DeepTCSize data. IBTrACS has collected TC data produced
by different regional specialized meteorological centers and
tropical cyclone warning centers around the world and pro-
vides interpolated 3-hourly estimates of the location, inten-
sity, wind radii, and other parameters covering each TC’s life
cycle. In line with the focus of our work, we have used the
data provided by the NHC, JTWC, and JMA.

NHC maintains the record of R17, R26, and R33 in the
geographic quadrants (northeast, southeast, southwest, and
northwest) surrounding the storm, which extends back into
the late 1980s for the North Atlantic and eastern North Pacific
basins (Demuth et al. 2006). However, NHC’s poststorm anal-
ysis of these data only began in 2004 (Landsea and Franklin
2013). JTWC provides wind radii data starting in the early
2000s, but the poststorm reanalysis only began in 2016 (Sampson
et al. 2017). RMW data are both accessible from NHC and
JTWC best tracks; however, it is worth noting that the NHC is
currently the only agency that conducts poststorm reanalysis of
RMW in the world (starting from 2021; Knaff et al. 2021). IMA
documents the longest best track records of TC sizes over the
WNP, which include the longest and shortest axis of R15 and
R26 in geographic octants from 1979 onward (Knaff et al. 2021),
but JMA neither provides data for R33 nor RMW. In this paper,
we have directly employed JMA R15 as R17. Also, note that the
gale region in TCs could be relatively widespread. As mentioned,
these agencies have relied on diverse observations, techniques,
and standards for analysis. Specifically, both NHC and JTWC
have used numerous scatterometers such as ASCAT to measure
TC sizes (Sampson et al. 2017), while JMA relied on available
observations, such as Himawari-8 satellite images, radar, surface
synoptic observations, ship, buoy, and ASCAT (Muroi 2018). In
the absence of the necessary observations, JMA estimates R15
and R26 between central pressure and wind radius using regres-
sion equations (Muroi 2018).

In this study, the R17, R26, and R33 refer to nonzero azi-
muthally averaged 17, 26, and 33 m s~ ! wind radii. For NHC
and JTWC data, we have calculated the wind radii as nonzero
average of the existing quadrants. For JMA, the azimuthal-
mean wind radii were calculated as the average of the longest

Brought to you by Columbia University | Unauthenticated | Downloaded 09/16/24 02:49 PM UTC



5108

JOURNAL OF CLIMATE

VOLUME 36

1980 1990 | 2000 | 2010 2020
Remotely sensed records
| QuikSCAT |
WindSat
AMSR-E | AMSR-2
SMAP
SAR

Best track records
JMA/RMSE Tokyo

| JTWC (2001-2015 operational; 2016-2018 best tracked)

DeepTCSize

1980 ‘ 1990

2000 |

2010 | 2020
L .

FIG. 2. TC sizes records since 1980 in the western North Pacific. Shaded horizontal areas indicate the periods during
which the TC size data were and are available from remotely sensed observations (green), best track datasets (blue),

and the DeepTCDat (brown).

and shortest geographic axes. Following Zhuo and Tan (2021),
only named storms of the JTWC best track intensity (Vmax)
above 17 m s~ ! are considered in this study. Note that records
that did not satisfy the physical relationship R17 > R26 > R33
and R17 RMW, R26 RMW, R33 RMW were
removed.

As stated in section 2, we have only used R17, R26, R33,
and RMW both from NHC over 2005-20 and JTWC over
2018-20 for our algorithm development, considering these
wind radii (except RMW) data have been applied with post-
season quality controls or have been observed with improved
capabilities (Knaff et al. 2021), i.e., in high quality. Also, we
have used the out-of-sample best track wind radii data which is
quality controlled at JTWC (i.e., 2016-17 data) as the test set
to assess our model and its TC size estimations. The JTWC
data in 2001-15 (not postseason reanalyzed) and the IMA data
were only introduced for data comparisons and discussions.

=

=

=

c. TC sizes from ocean wind observations

To assess the quality of our TC sizes estimations con-
structed from IR imagery, several observations of surface
winds have also been considered. We used remotely sensed
ocean winds from three data archives. The first data archive is
R17, R26, and R33 documented in the optimized version of
the QuikSCAT database of science quality, which spans the
period 1999-2009 (Chavas and Vigh 2014). Following the rec-
ommendation of Chavas et al. (2016), we have kept only the
QuikSCAT wind radii for which the uncertainty parameter is
defined as ¢ = 0.5. The second data archive is R17, R26, and
R33 from the Remote Sensing Systems (RSS) TC-winds prod-
ucts (Meissner et al. 2021), which consists of SMAP, WindSat,
and AMSR observations. The L-band SMAP observations pro-
vide realistic wind retrievals in TCs and are not affected by rain
(Meissner et al. 2017), and the WindSat and AMSR TC-winds
are reprocessed from their C-band and X-band channels to be
of comparable quality with the SMAP (Meissner et al. 2021).
The SMAP, WindSat, and AMSR data span 2015-20, 2003-20,
and 2003-20, respectively. The third data archive is the 3-km

averaged co- and cross-polarized SAR winds data, which in-
cludes measurements of R17, R26, R33, and RMW. Recent
studies have revealed that the maximum winds observed by
SAR are well correlated with small biases to those estimated
from the airborne SFMR, and the SAR could currently be the
most reliable data source for the inner-core size for the TCs in
the WNP (e.g., Combot et al. 2020). However, it is good to note
that the SAR data are sparse and only a few SAR samples coin-
cident with our reconstructed data are available. These re-
motely sensed TC size observations are applied to assess the
reliability of our reconstructed data of TC sizes.

The remotely sensed ocean wind data were also processed
with nonzero azimuthal average, and these data were only
used to assess the quality of TC size estimations, and not to
train the DeepTCNet.

4. Dataset overview and evaluation
a. Overview of DeepTCSize

As described in section 2b, DeepTCSize is obtained by apply-
ing DeepTCNet to a homogenized record of satellite IR imagery.
The DeepTCSize data corresponds to the following: 1) named
storms of the best track intensity (Vmax) above 17 m s~ ! over
the WNP basin (100°E-180° and 0°-60°N); 2) R17 and RMW
data that are valid only for TCs of Vmax = 17 m s~ R26 data
that are valid only for TCs of Vmax = 26 m s~ ' and R33 data
that are valid only for TCs of Vmax = 33 ms™'; 3) cases having
TC fullness: TCF = 1 — RMW/R17 = 1 — 17/Vmax = TCF, to
remove unphysical values (Guo and Tan 2017, 2022); 4) exclu-
sion of none tropical systems such as the post-tropical cyclones
and miscellaneous disturbances.

Figure 2 displays the temporal availability of DeepTCSize
(brown bar). DeepTCSize spans the past 37 years, from 1981
to 2017, to be precise. Due to the use of 3-hourly all-weather
IR-channel satellite data (section 3a), DeepTCSize also possesses
a continuous and high temporal coverage. The year 1981 is the
year in which geostationary satellite data started to become con-
sistently available in the eastern hemisphere (Knapp et al. 2010).
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FIG. 3. Maps of the spatial distributions of all samples in DeepTCSize for (a) R17, (b) R26, (c) R33, and (d) RMW.

Also, the 201820 data used for DeepTCNet development are
not included in DeepTCSize.

In Fig. 2, comparisons between the historical datasets of TC
sizes available over the WNP are also shown. Among these
datasets, DeepTCSize and JMA maintain the longest records,
roughly from 1980, and these records are nearly 2 times longer
than those documented by JTWC. For remotely sensed surface
wind data of TCs, both WindSat and AMSR (AMSR-E +
AMSE-2) cover 18 years (2003-20), QuikSCAT spans 11 years
(1999-2009), while the more recent capacities of SMAP and
SAR became available in 2015. Although Fig. 2 is not a com-
plete representation of observational availability, it raises some
concerns about the quality of the data of historical TC size re-
cords before 2000. This is because the observations and techni-
ques available to inform wind radii estimates are limited or
nonexistent (Knaff et al. 2021). Figure 2 also reveals the signifi-
cant changes and advances in observational capabilities over
time. This also appears to be one of the major issues of best
track database, and it will be discussed further in section 5. In
conclusion, of all the datasets listed in Fig. 2, only DeepTCSize
provides homogeneous TC size data spanning nearly 40 years.
This capability of DeepTCSize could support the reliable detec-
tion of long-term trends in WNP TC size, as long as the data-
set’s accuracy (to be examined in section 4b) is also proven.

The map of the DeepTCSize for the WNP basin (100°E-
180° and 0°-60°N) is illustrated in Fig. 3. DeepTCSize com-
prises four TC size parameters viz, R17, R26, R33, and RMW.
The sample size is 37480 for R17, 26413 for R26, 18524 for

R33, and 37480 for RMW. All the data are in MKS units. As
shown in Figs. 3a—c, the spatial distributions of the outer-core
sizes R17, R26, and R33 are relatively similar, and they in-
crease with recurving tracks and higher latitudes, as noted in
previous studies (e.g., Kimball and Mulekar 2004; Knaff et al.
2014; Chan and Chan 2015). The patterns of the spatial distri-
butions of R17, R26, and R33 also suggest that there is a con-
sistent expansion or contraction of the outer circulations of
TC wind fields. RMW is shown in Fig. 3d, and it can be seen
that no clear pattern is observed. Therefore, we regrouped
the RMW in DeepTCSize by latitudes at a 5° interval and
found that the RMW slightly decreases from 35 km south of
10°N to a minimum of 32 km at 15°N, then increases to over
45 km north of 35°N. This observation that RMWs increase
with latitude, has been reported in previous studies (e.g.,
Knaff et al. 2015), and this could be due to fact that R34 also
increases with latitude as suggested by Chavas and Knaff
(2022). Table 1 shows the data statistics of TC sizes in

TABLE 1. Statistics of TC sizes in DeepTCSize, including data
number, median, first and third quartiles, mean, standard deviation
(Std), and coefficient of variation (CV).

TCsize (km) N  25% Median 75% Mean Std CV (%)
R17 37480 171 228 296 240 88 37
R26 26413 91 123 164 130 49 38
R33 18524 53 74 96 75 26 35
RMW 37480 32 47 63 50 24 49
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FIG. 4. Wind radii estimations from DeepTCSize (solid-line circle) and JTWC best track (dashed-line circle) for (a) Typhoon Mifua
(2011), (b) Typhoon Haiyan (2013), and (c) Typhoon Noru (2017). The estimates are shown every 12 h with R17, R22, R33, and RMW be-
ing displayed in black, blue, orange, and red, respectively. Dates/times are shown once a day to the right.

DeepTCSize. The mean value of R17 is 240 km with an inter-
quartile range of [171, 296] km. This descriptive statistic is
comparable to the mean R17 values (235 km) for WNP TCs,
calculated using QuikSCAT observations (Chan and Chan
2015). Our estimated mean R17 for WNP also is larger than
the observed mean R17 in other ocean basins (Chan and Chan
2015). In addition, the mean values for R26, R33, and RMW
are 130, 75, and 50 km, respectively.

To demonstrate how the DeepTCSize data would appear
to users, Fig. 4 illustrates three long-lived TCs of the WNP
that all caused widespread damages—Typhoon Muifa (2011),
Typhoon Haiyan (2013), and Typhoon Noru (2017). The
DeepTCSize R17, R26, R33, and RMW are in black, blue, or-
ange, and red with solid lines, respectively, showing inter- and
intrastorm variations of TC size metrics for these three cases.
As a simple comparison, Fig. 4 also shows the size estimations
from JTWC in dashed-line circles. The comparisons of the TC
size estimations from different agencies will be discussed in
section Sa.

b. Evaluation of DeepTCSize

To evaluate the validity of DeepTCSize, we first compared
our TC sizes products to coincident best track estimations
that have been postseason verified by the JTWC (2016/17
TCs; N = 1545). Figure 5 shows the comparison results for
R17, R26, R33, and RMW. From the comparisons, it was

observed that there is a high correlation between the JTWC
best tracks and DeepTCSize for the four wind radii. Specifi-
cally, R17 has the highest correlation (R = 0.85), followed by
R26 (R = 0.84), R33 (R = 0.79), and RMW (R = 0.76). The
normalized bias values are 13%, 8%, 8%, and 10% for R17,
R26, R33, and RMW, respectively. Among the four wind radii,
the outer-most TC size, R17, has the highest correlation coeffi-
cient (R = 0.85) and the smallest scatter index (SI = 24%)
(i.e., the best accuracy). It is good to mention that the accuracy
decreases with wind speed values associated with the radii,
yielding R = 0.76 and SI = 36% for RMW. This is consistent
with the inherent uncertainty of the best track wind radii
(Landsea and Franklin 2013; Combot et al. 2020). Since the
best track wind radii data were mostly derived from indirect
methods or low-orbit satellite missions with medium to low res-
olution (Knaff et al. 2021), a poor resolution during the obser-
vations could have limited the precision of the wind radii and
RMW data for higher wind speeds, especially the most intense
inner-core wind radii RMW. Figure 5 also shows that the data
points at the time of LMI, have TC size estimations with higher
correlations (R = 0.90, 0.90, 0.89, and 0.80 for R17, R26, R33,
and RMW, respectively) and lower errors (MAE = 35, 21, 12
and 12 km for R17, R26, R33, and RMW, respectively).

Using the same test samples, R17, R26, R33, and RMW of
DeepTCSize for the Saffir-Simpson storm intensity category
were further analyzed. Figure 6 shows that the variations of
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FIG. 5. Comparison of DeepTCSize and best-track data verified postseason in 2016-17 for (a) R17, (b) R26,
(c) R33, and (d) RMW for all coincident samples (black dots) and the cases at the time of lifetime maximum intensity
(magenta dots). The black dashed line is the “1-to-1” line; black and magenta lines are the linear regression model fits

for the data.

the averaged DeepTCSize wind radii (solid lines) as a func-
tion of the storm category are identical to those of the best-
tracked mean wind radii (dashed lines) for each size metric.
One of the most basic TC intensity and size relationships
widely observed and studied is that the larger TC outer-core
sizes (R17, R26, and R33) and the smaller TC inner-core size
RMW when the intensity increases. This is well captured by
DeepTCSize. Figure 6 also presents the mean absolute differ-
ence (i.e., MAE) between DeepTCSize and the best track
data (shaded area) for each storm category. The results show
that the MAEs of R17, R26, and R33 are almost constant
relative to the TC intensity. However, the MAEs of RMW in
DeepTCSize are larger for weak storms and smaller for in-
tense storms. This could be indicative of the higher uncer-
tainty in estimating the RMW of weak storms from IR
imagery.

To make the dataset evaluation more robust, we have also
compared DeepTCSize with the remotely sensed ocean wind
observations described in section 3c. As DeepTCSize has a
much higher temporal resolution (3 h) over the sparse and
intermittent observations, we have interpolated the Deep-
TCSize data to be the time of observations before the calculations.
Figure 7 shows the comparisons made between DeepTCSize and
QuikSCAT, WindSat, AMSR, and SMAP for R17. High cor-
relations are observed for DeepTCSize. The results for R26,
R33, and RMW have also been derived using the same
method. Assuming the SMAP as reference values for R26 and
R33, the correlation is 0.72 (N = 101) and 0.73 (N = 96), re-
spectively. As for RMW, the SAR could currently be the only
satellite observation platform of proven capability over the
WNP (Combot et al. 2020). However, there are only 15 coinci-
dent RMW samples for DeepTCSize and SAR and their
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DeepTCSize JTWC best tracks.

correlation is 0.69. In addition, we also verified DeepTCNet
via a simple case study.

In all, the MAEs of the four wind radii for WNP TCs are
consistent with those predicted for North Atlantic TCs us-
ing DeepTCNet (Fig. 4 of Zhuo and Tan 2021). This con-
firms that the adoption of DeepTCNet is a good choice.
The results calculated here using DeepTCSize are also con-
sistent with previous studies that state that the best track
wind radii have uncertainties (in terms of SI) in a range
from 10% to ~40% (Knaff and Sampson 2015). Although
we acknowledge the uncertainty of the TC size data is
debatable, it is important to note that our IR-based TC
size estimations produced by deep learning have much
lower errors (MAEs < 40 km) in total, in comparison to
the existing indirect observation-based measurements
(MAEs > 46 km) (Demuth et al. 2006; Kossin et al. 2007,
Knaff et al. 2011, 2016). Our IR-based TC size estimations
are also found to be comparable to the emerging observa-
tional capabilities (Reul et al. 2017; Combot et al. 2020).
Since the more recent best track data have higher quality
due to technology advancements, the good agreement be-
tween DeepTCSize and the 2016-17 quality-controlled
best track wind radii (Fig. 5) suggests that DeepTCSize is
comparable to the “best estimates” currently available
for WNP TCs. The relatively detailed assessment of
DeepTCSize performed here has increased our confidence
in DeepTCSize. In the following section, we utilized
DeepTCSize to explore the data discrepancy issue of TC
sizes over the WNP, and then analyzed the long-term cli-
matology of WNP TC size.

JOURNAL OF CLIMATE
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5. Applications of DeepTCSize
a. Comparison of historical TC sizes data over the WNP

The lack of consistent and reliable historical data has lim-
ited the research and understanding of the nature of TC sizes.
As noted previously, there are a few historical datasets of TC
size now available over the WNP; however, their quality re-
mains either unknown or unverified. In particular, the homo-
geneity of the datasets remains a serious issue, for they can
potentially yield spurious signals. To have a better under-
standing of existing issues in TC size data and their possible
influences on the resultant findings, this section compares
DeepTCSize with two widely used best track datasets. Note
that the TC wind radii directly observed from remote sensing
platforms (see section 3c) are assumed to be the reference
values.

Figure 7 shows comparisons of the R17 estimations from
DeepTCSize, JTWC, and JMA. In Fig. 7, it can be observed
that there are significant biases in the JMA best track data-
base. That is, JMA systematically produces larger R17 estima-
tions, hence the largest absolute errors. In contrast to this, the
R17 estimates from both JTWC and DeepTCSize are in
strong consonance with the remotely sensed TC size data. In
Fig. 7, it can also be observed that the three datasets have
relatively good correlations with the remotely sensed data
(0.63-0.86). These good correlations may be a result of IMA
and JTWC operationally adopting the remotely sensed data
to produce TC size estimations (Sampson et al. 2017; Knaff
et al. 2021). However, the high correlations between the ob-
servations are more robust for the objective IR-based estima-
tions of DeepTCSize. Similar comparisons have been made
for R26 (Fig. 8). As expected, the correlations for R26 slightly
decrease as the wind speed increases. This is probably due to
the already discussed resolution issue (see section 4b). How-
ever, for R26, the JMA overestimation issue seems to have
been reduced. In all, it can be said that DeepTCSize has the
most accurate historical TC size estimations (R17 and R26),
even though only IR imagery satellite data were used to
generate the dataset. This implies that some operational tech-
nology issues may exist in the JMA and JTWC TC size
estimations.

Data discrepancy is further explored as the time series of
R17 calculated with IMA, JTWC, and DeepTCSize (Fig. 9).
It can be observed that JMA’s annual-mean R17 is consis-
tently larger than those obtained by DeepTCSize and JTWC,
as illustrated in Fig. 7. Note that such data discrepancy among
agencies has also been exemplified by previous studies (e.g.,
Song and Klotzbach 2016; Kim et al. 2022). Much of the dis-
parity can be attributed to agency-specific techniques and pol-
icies: JMA estimates TC winds in conjunction with other
midlatitude synoptic systems to make more comprehensive
TC warnings, whereas JTWC estimates wind radii mainly
based on a TC’s winds (Kim et al. 2022). Using DeepTCSize
as a baseline, we have also found that JTWC’s best track data-
base had a significant change in quality around 2016. This is
the year JTWC initialized the postseason reanalysis of wind
radii (Sampson et al. 2017), and our results indicate that the
verification of TC size data at JTWC seems to have a
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FIG. 8. As in Fig. 7, but for R26.
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substantial impact. The application of modern techniques at
JTWC could be an additional factor (JTWC 2016, 2017). De-
spite the considerable discrepancy in the mean values, the
time series of R17 from JMA, JTWC, and DeepTCSize ex-
hibit comparable interannual variability, suggesting all three
datasets have captured the large-scale controls on the TC
outer size in terms of R17.

There is another important issue—would the errors in
these datasets cause spurious signals of trends in TC size, and
how large are the amplitudes of the noise? To answer this
question, we have calculated the errors of R17 estimates inter-
polated from JMA, JTWC, and DeepTCSize against the re-
motely sensed observations, as a function of time. Since the
remotely sensed data from each satellite source remain
consistent during their serving periods, if the errors of R17
estimates have statistical trends, then the quality of R17 esti-
mates during one specific period could have changed.
Figure 10 depicts error points and the ordinary least squares
fit with seasons. During the first decade of the 2000s, JMA ex-
hibited a statistically significant (p = 0.018) error trend of
R17. In the 2000s, JTWC also shows a weak increasing trend
of errors, but it is not statistically significant. In contrast, we
have observed no trends in the errors of DeepTCSize com-
pared with the ocean—wind observations. Taking DeepTCSize
against WindSat + AMSR (longest coverage over 2003-17) as
an example, the trend of error is around 0.32 km decade ™
(p 0.942), confirming the good temporal consistency of
DeepTCSize. Comparisons of DeepTCSize R26 and R33 with
WindSat + AMSR (not shown) also yield near-zero trends in
errors. This result increases our confidence in applying
DeepTCSize for examining the changes in TC size metrics in
the following subsection.

b. Trend analysis

Given DeepTCSize’s long-term coverage and confirmed
quality and homogeneity, we have used the DeepTCSize data
to investigate the trends of TC sizes over the WNP in the
37-yr period (1981-2017) (Fig. 11a). Note that only the TCs
lasting =2 days have been considered for the trend analysis,
and the corresponding maximum wind speed thresholds used
for the samples of R17, R26, R33, and RMW are 17, 26, 33,
and 20 m s~ !, respectively.

The annual mean time series and corresponding ordinary
least squares fit of these 37 single values for each TC size pa-
rameter are shown in Figs. 11a—d, and the statistics of the
slopes are detailed in Table 2. Both R17 and R26 exhibit sig-
nificant increasing trends: +5.8 km decade ™ (p = 0.04) for
R17 and +3.1 km decade™" (p = 0.07) for R26. In contrast to
this, the wind radii for high wind speed R33 show a
near-zero increasing trend (+0.6 km decade '), and the TC
inner-core size RMW shows a near-zero decreasing trend
(—0.2 km decade ). It is also worth noting that, even though
the amplitude of the mean trend of R17 seems to have a small
value (+5.8 km decade ™", roughly equal to 2%) for the WNP
TCs over 1981-2017, such a trend for a TC with an averaged
R17 of 240 km (Table 1) corresponds to an area expansion of
+2818 km?>—roughly half of the Shanghai area and 4 times of
New York City—per decade, taking the TC wind field as a
first-order symmetric circle.

Figure 12 shows the trends of annual mean TC sizes over
the 37-yr period when the storms reach their LMI. In Fig. 12,
it can be observed that there are increasing trends for outer-
wind radii (R17, R26, and R33) and decreasing trends for
inner-core size (RMW). However, the amplitudes for these LMI
samples are greater than those of all WNP storms (Table 2).
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WindSat + AMSR; blue: SMAP) as reference values. Dots denote the R17 estimates minus the observed R17 values;
the line displays the linear regression model fit. Note that the R17 estimates have been interpolated to be at the same

time of observations.

The trends for R17, R26, R33 and RMW indicate metrics of
+7.4 km decade™! (p = 0.03), +4.1 km decade™! (p = 0.02),
+1.7 km decade ™! (p = 0.11), and —0.4 km decade ™! (p = 0.61),
respectively. If the observed trends in the expansion of TC
outer circulations persist, the destructive potential and damage
hazards of TCs may substantially increase.

As already explained and noted so far, the simple time se-
ries is based on the reduction of each year’s data to annual-
mean single values, such that the trends are obtained with the
ordinary least squares fit to these 37 single values. To perform
a more rigorous analysis of the trends and their levels of confi-
dence, the quantile regression is applied to the WNP TC size
in DeepTCSize (as used for Fig. 11). The quantile regression
is used similarly to the trend analysis of TC intensity de-
scribed in Kossin et al. (2013). Figure 13 shows the quantile
regression for each 2.5% quantile from 5% to 95%. In Fig. 13,
it can be seen that R17 exhibits significant trends in all quan-
tiles, except for those above the 90th percentile, indicating an
overall large shift of TC outer-core size (Fig. 13a). The peak
trend, approximately +8 km decade ', is also observed close
to the 80% quantile (~314 km) of the distribution in Fig. 13.
The vanished trend at the 0.9 quantiles in Fig. 13 can be partly
attributed to the limited sample amount. R26 shows a similar
pattern to that of R17 for the slopes of the trends (Fig. 13b).
Also in Fig. 13b, the median to large quantiles between 50%

and 80% (~123-174 km) of R26 exhibit the largest trend of
about +5 km decade™'. A similar pattern—median to larger
quantiles increase the most—is also found for R33, but the
trends are weaker (~0.5%-1.5%; Fig. 13c). In contrast to the
abovementioned result, the TC inner-core size RMW exhibits
significant negative trends in all quantiles, except for the 90th
percentile. In all, the results imply that for the WNP basin
over the period 1981-2017, there are expanding trends in the
TC outer-core wind radii, while the inner-core size RMW
shows a contracting trend, confirming the results calculated
with annual-mean wind radii (Fig. 11).

Figure 14 further illustrates the trends for outer- to inner-
core wind radii for 1981-2017 WNP TCs cases categorized by
different intensity scales. It is interesting to see that TCs with dif-
ferent intensity scales have different changes in their wind struc-
ture. The category 0 cases (i.e., tropical storm; 17-32 m s~ ') were
identified to have expanding trends in the whole wind field
from RMW to R26 and R17. The outer circulations of the
tropical storms have significantly increased by +4% decade ™!
(=82 km decade™!; p = 0.002) for R17 and +5% decade !
(=53 km decade ™ !; p = 0.003) for R26. In comparisons, the cat-
egory 1-2 cases (32-48 m s~ 1) have a significant contracting trend
of —3% decade™! (p = 0.08) for RMW, while insignificant
trends for outer-core wind radii (R17, R26, and R33) were ob-
served. This result also indicates that the upward trends in R17
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FIG. 11. Time series of annual-mean (a) R17, (b) R26, (c) R33, and (d) RMW over the 37-yr period (1981-2017) for the
WNP TCs. Linear trend lines (black line) are shown with their 90% confidence intervals (shaded area).

and R26 (Fig. 12) are primarily associated with weaker storms.
As for the very intense cases (category 3-5; =48 m s '), they
tend to have no detectable changes in their wind structure. In ad-
dition, we have further performed partial correlations to test the
influence of latitude since poleward shifts were found for the
maximum TC intensity in the WNP (e.g., Kossin et al. 2016),
showing that controlling the latitude (calculated from JTWC best
tracks) does not change the statistical significances listed above.
In all, our results confirm that the model projections of outer
TC size over the WNP are generally on the order of 10% or
less (e.g., Kim et al. 2014; Knutson et al. 2015; Yamada et al.
2017). Given that the intensities of TCs are usually accompa-
nied by the expansion of the outer circulations and/or contrac-
tion of RMW, as suggested by the physical model (Chavas et al.
2015), the changes in the TC wind field structure based on
DeepTCSize are likely to be consistent with the expectations
of increasing TC intensity with global warming, as predicted
by potential intensity theory (e.g., Holland and Bruyere 2014;

TABLE 2. Linear trends of annual-mean TC sizes over
1981-2017, calculated from DeepTCSize. Statistics are shown as
trend * standard error, and statistical significance is indicated in
bold at the 90% confidence interval.

R17 R26 R33 RMW
All cases 58 = 2.7 3117 0610 —-02 = 0.6
LMI cases 74 = 3.1 41 = 1.7 1.7 £ 1.0 —-0.4 = 0.7

Sobel et al. 2016). However, since this is hypothetical and there
is no supporting evidence, it can be said that the observed
changes in TC sizes over the WNP using DeepTCSize cannot
be fully understood from the trends. Consequently, additional
work such as climate model simulations is required.

6. Summary and discussion

This study has utilized deep learning methods to improve
the construction of historical TC size datasets over the WNP.
The TC size estimation algorithms were developed based on
DeepTCNet (a physics-augmented deep learning model de-
signed to infer critical intensity and size information of TCs
from IR imagery) (Zhuo and Tan 2021). Transfer learning
was initially carried out to establish reliable TC size estima-
tion algorithms suited to the WNP TCs. The algorithms were
then applied to a homogenized (spatiotemporal) record of
satellite imagery to generate a long-term historical TC size da-
taset named DeepTCSize. DeepTCSize includes multiple TC
size quantities such as R17, R26, R33, and RMW that depict
the complete radial wind structure of a TC, and provides a
large amount of data (3-hourly; N = 37480) for TCs over the
WNP basin (100°E-180° and 0°-60°N) from 1981 to 2017. The
mean values of R17, R26, R33, and RMW are about 240, 130,
75, and 50 km, respectively.

Using two years of coincident samples (2016-17; N = 1545),
DeepTCSize’s data quality was evaluated and high correlations
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FIG. 12. As in Fig. 11, but for the TCs that achieved their lifetime maximum intensity.

(0.76 ~ 0.85) were found for each of the wind radii parameter
in comparison to the quality-controlled best track data. Among
all TC size quantities in DeepTCSize, R17 yields the best accu-
racy in terms of the highest correlations and the lowest uncer-
tainty (R = 0.85; SI = 24%). Comparisons with the remotely
sensed TC ocean winds from multiple sources further increased
the confidence in the quality of DeepTCSize. More impor-
tantly, the homogeneity of DeepTCSize is also verified, as
near-zero trends were found when compared with the historical
ocean wind observations of TC. Summarily, given the good
agreement between DeepTCSize and the “best estimates” so
far available from JTWC in recent years (the current state of
observational capability), the method proposed in this paper
can be simply regarded as applying deep learning to extend the
current state-of-the-art quality of TC size data to the whole sat-
ellite era with consistency.

In this study, we have demonstrated that DeepTCSize fills
a large part of the significant data gap reported in the WNP
where there has been the absence of reliable long-term ob-
served TC size data. Hence, a variety of potential applications
are enabled as a result of this data infilling. For example,
we have used DeepTCSize as a baseline to investigate the
defective data quality and buried data issues in the best track
records maintained by the JMA and JTWC. In our investiga-
tions, a significant data discrepancy was observed among
these datasets. Particularly, the best track records were found
to include spurious trends that were proven to be large
enough to even reverse the signs of size changes over the

Brought to you

WNP. This clearly suggests great caution must be exercised
when the best track data for TC size is being used for climato-
logical studies. In particular, the past findings based on the
best tracks for trend analysis ought to be reconsidered.

Using DeepTCSize, the trends of WNP TC size have been
investigated in this study. Our investigations reveal significant
increasing trends in the annual-mean TC outer-core size R17
of about +5.8 km (2%) per decade and +3.1 km (2%) for
R26 for the WNP TCs over 1981-2017, and no significant
trends were identified for R33 and RMW. The TC cases that
reach their lifetime maximum intensity (LMI) were found to
exhibit larger amplitudes of trends for each size parameter.
This is an indication of a potentially higher risk of damage
that could be caused by TCs over the WNP, regardless of
whether their LMI remain unchanged or even decrease. In ad-
dition, we have also applied a more rigorous method (quantile
regression) for the trend analysis of WNP TC size. Our findings
reveal that there is a significant expanding trend for the TC
outer-core sizes (R17, R26, and R33), while the TC inner-core
size (RMW) exhibits a contracting trend. And results also show
that the WNP TCs with different intensity scales exhibit differ-
ent trends in their wind structure. The weak tropical-storm-scale
storms were identified to have significant expanding trends in
the whole wind field. Category 1-2 cases exhibit a significant de-
creasing trend in the RMW but remain unchanged in their
outer circulations. In comparison, the very intense storms tend
to have no detectable changes in their wind structure. Our re-
sult also suggests that upward trends in R17 and R26 are
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FIG. 13. Trends in the quantiles of (a) R17, (b) R26, (c) R33, and (d) RMW over the 37-yr period (1981-2017) cal-

culated with the TCs as Fig. 11. The black dots represent the trends in the quantiles of each TC size parameter from
0.05 to 0.95 in steps of 0.025. Shading represents pointwise 95% confidence (two-tailed). The red solid line shows the
(constant value) trend in the mean as measured by ordinary least squares regression, and the red dashed lines show

the confidence interval.

primarily shown to be associated with weaker storms. Given
that it may turn out that global warming creates more opportu-
nities for tropical storm formation and higher peak intensities in
the WNP, it is essential to investigate the relationship between
climate change and TC size, which is a good proxy for rainfall
potential.

Since this study is limited to the WNP basin, there is still a
need to investigate the global observed TC size climatology.
This is because data availability and policies vary from agency
to agency over time and the prospect of having a reliable
global homogenized reanalysis of TC size is challenging. Pres-
ently, the reconstruction of historical TC size records for
other basins like the Southern Hemisphere and the north In-
dian Ocean still requires a careful design of algorithms, in-
cluding the application of deep learning methodologies with
transfer learning as introduced and carried out in this study.
In other words, the application of deep learning could help
hasten the realization of reliable global homogenized TC size
data. This will be more realistic if a less strict data precision
standard is considered such as sacrificing accuracy for consis-
tency, as past studies did (e.g., Kossin et al. 2007). In this
study, we have applied transfer learning to adapt the Deep-
TCNet from the North Atlantic to the western North Pacific
to obtain relative MAE reduction of 10%, 18%, 14%, and

36% for R17, R26, R33, and RMW, respectively. It is good to
note that there is still room for improvement in the perfor-
mance of the DeepTCNet-based TC size estimation and rean-
alysis. In other words, it can be expected that as more reliable
observations become available for the TC wind field in the fu-
ture, DeepTCNet could be retrained with these data, and
then the improved capability of observations can be deployed
to cover more areas via applying DeepTCNet to a reanalysis
of historical satellite data.

With the availability of long-term climate datasets for TC
size, many studies can be conducted in the future. For exam-
ple, a more comprehensive study of TC size climatology, such
as those previously performed using scarce QuikSCAT data
(e.g., Chan and Chan 2015; Chavas et al. 2016), can be ex-
plored with DeepTCSize. Additionally, a new dataset of the
complete radial wind structure of TCs can be generated by
combining DeepTCSize with TC wind structure models (e.g.,
Chavas et al. 2015). Such a dataset will allow for a holistic
analysis of radial wind structure and ultimately the enhance-
ment of the general understanding of the nature of the TC
wind structure. For the readers who are interested in studying
TC asymmetries, one can use the reconstructed azimuthal-
mean wind radii data together with storm motion and location
to further fit for four-quadrant wind radii by using the vortex
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methodology (Knaff et al. 2016) or some simple regression
model. In addition, DeepTCSize can also be used for theoreti-
cal comparisons aimed at the development of forecasting al-
gorithms. It can also be used for case studies of specific
systems, especially systems for which traditional observations
of TC size may have been missing or uncertain in the past.
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